

PDE-DRIVEN SPATIOTEMPORAL DISENTANGLEMENT ICLR 2021

May 3rd to 7th, 2021

<https://openreview.net/forum?id=vLaHRtHvfFp>

Jérémie Donà,¹ Jean-Yves Franceschi,¹ Sylvain Lamprier,¹ Patrick Gallinari^{1,2}

¹Sorbonne Université, CNRS, LIP6, F-75005 Paris, France ²Criteo AI Lab, Paris, France

Fact

Disentanglement improves interpretability thanks to factorization

Hypothesis

A well designed spatiotemporal disentanglement would help prediction

- \triangleright Prior spatiotemporal disentanglement works are often complex and do seldom analysis of its meaning
- \triangleright We aim at grounding spatiotemporal disentanglement on stronger foundations

Setting

- \triangleright Observations $v = (v_{t_0}, \ldots, v_{t_1})$
- State of the system $u_v = u: (x, t) \mapsto u_v(x, t)$
- ► We suppose that v is a measurement of u: $v_t = \zeta(u_v(., t))$

- \triangleright We propose a novel interpretation of spatiotemporal disentanglement based on the separation of variables in PDEs
- \blacktriangleright Example with the heat equation:

$$
\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}, \quad u(0, t) = u(L, t) = 0, \quad u(x, 0) = f(x),
$$

with separable solutions:

$$
u(x,t) = \underbrace{\mu \sin\left(\frac{n\pi}{L}x\right)}_{\phi(x)} \times \underbrace{\exp\left(-\left(\frac{cn\pi}{L}\right)^2 t\right)}_{\psi(t)} = \xi\big(\phi(x), \psi(t)\big)
$$

 \triangleright ϕ and ψ can be found by solving an ODE on t and a PDE on x

 \blacktriangleright We learn latent S, T_t and a decoder D such that:

$$
\phi \equiv S \in \mathbb{R}^d, \qquad \psi \equiv T \colon t \mapsto T_t \in \mathbb{R}^p, \qquad D \equiv \zeta \circ \xi
$$

 \blacktriangleright S and T_{t_0} are inferred with encoders E_S and E_T from conditioning frames:

$$
V_{\tau}(t_0)=(v_{t_0},\ldots,v_{t_0+\tau})
$$

Forecasting

 \blacktriangleright $T \equiv \psi$ is driven by an ODE:

$$
\frac{\partial T_t}{\partial t} = f(T_t)
$$

Forecasting and alignment losses:

$$
\mathcal{L}_{\text{pred}} = \sum_{t} \|\widehat{v}_t - v_t\|_2^2, \quad \mathcal{L}_{\text{AE}} = \left\| D\left(S, E_T\left(V_\tau(t')\right)\right) - v_{t'} \right\|_2^2
$$

Forecasting

 \blacktriangleright $T \equiv \psi$ is driven by an ODE:

$$
\frac{\partial T_t}{\partial t} = f(T_t)
$$

Forecasting and alignment losses:

$$
\mathcal{L}_{\text{pred}} = \sum_{t} \|\widehat{v}_t - v_t\|_2^2, \quad \mathcal{L}_{\text{AE}} = \left\| D\left(S, E_T\left(V_\tau(t')\right)\right) - v_{t'} \right\|_2^2
$$

Invariance of S and Spatiotemporal Disentanglement

 \blacktriangleright From a strict S invariance constraint to a weaker one to take into account variations of observable content:

$$
\frac{\partial E_S(V_\tau(t))}{\partial t} = 0 \Rightarrow \mathcal{L}_{\text{reg}}^S = \left\| E_S(V_\tau(t_0)) - E_S(V_\tau(t_1 - \tau)) \right\|_2^2
$$

Disentanglement loss:

$$
\mathcal{L}_{\text{reg}}^T = ||T_{t_0}||_2^2 = ||E_T(V_\tau(t_0))||_2^2
$$

Results (MNIST)

Results (Multiview)

- \triangleright We learn a simpler PDE acting on fewer variables thanks to the separation of variables inspiration
- This induces a simple model with better prediction and disentanglement performances
- Thorough experiments, comparisons and ablation studies confirm the benefits of the model.