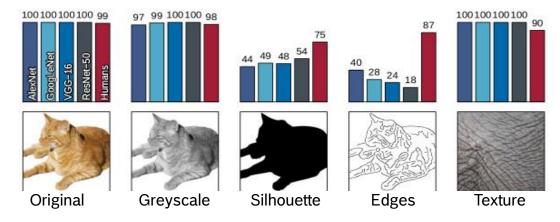
DOES ENHANCED SHAPE BIAS IMPROVE NEURAL NETWORK ROBUSTNESS TO COMMON CORRUPTIONS?

CHAITHANYA KUMAR MUMMADI*1,3, RANJITHA SUBRAMANIAM*2, ROBIN HUTMACHER¹, JULIEN VITAY², VOLKER FISCHER¹, JAN HENDRIK METZEN¹

¹BOSCH CENTER FOR AI (BCAI), GERMANY ²TU CHEMNITZ ³UNIVERSITY OF FREIBURG

ImageNet trained CNNs are biased towards texture

▶ Geirhos et al., (2019) verified the performance of CNNs on various image representations.



► Texture-shape cue conflict

CNN predictions:

a) Texture image

81.4% Indian elephant

b) Content image c) Texture-shape cue conflict

71.1% Tabby cat

63.9% Indian elephant

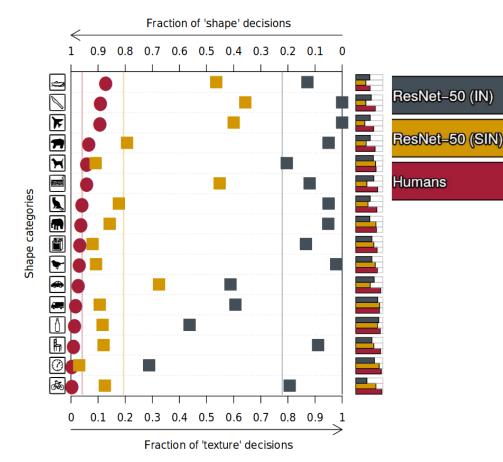
CNNs are texture-biased!

CNNs trained with stylized ImageNet (SIN)

- ► Avoid texture cues
- ► Compelled to make decisions based on shape details.

Stylized images generated using various styles

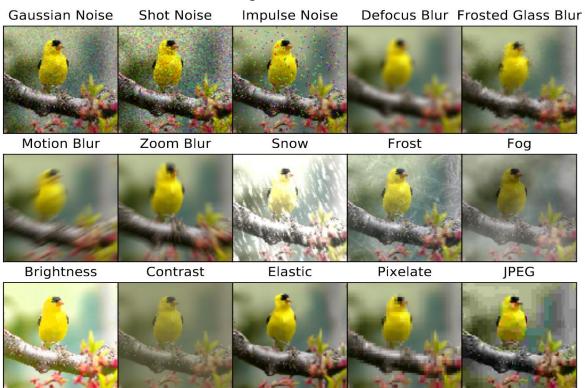
Original image (IN)



Motivation

► Robustness against common corruptions with ImageNet-C benchmark.

ImageNet-C



Evaluation on ImageNet-C distortions

Network	mCE
Standard CNN	76.7
Stylized CNN	69.3

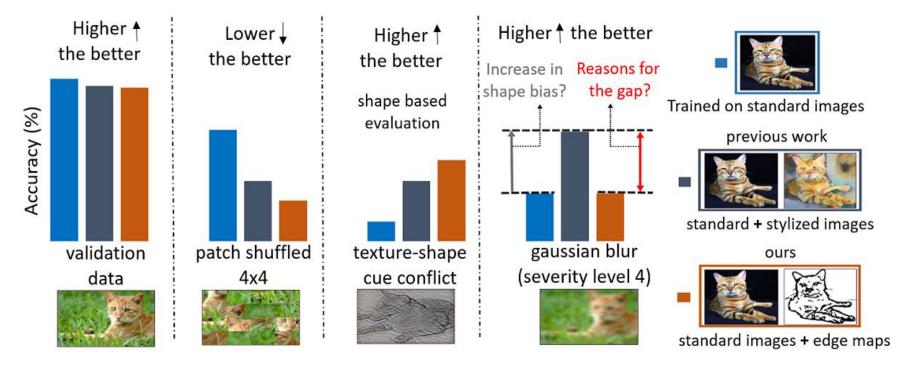
• mCE - mean Corruption Error on 15 corruptions (lower the better)

Hypothesis: Increased shape bias improves corruption robustness

Hendrycks, D., et al. "Benchmarking neural network robustness to common corruptions and perturbations" ICLR, 2019.

Our contributions

- ► Enhance CNNs shape bias: use edge maps and randomize style information to reduce texture bias.
- ▶ Demonstrate that there is no clear correlation found between shape bias and corruption robustness.
- ► Study to understand the reasons for improved corruption robustness with Stylized ImageNet.



Learning shape based representations Edge maps

- ► Train a network using standard images along with their edge maps.
 - edge maps are extracted using an existing deep network Rich Convolutional Features(RCF)
 - enhances shape representations of the network

Standard RGB image

Canny edge map

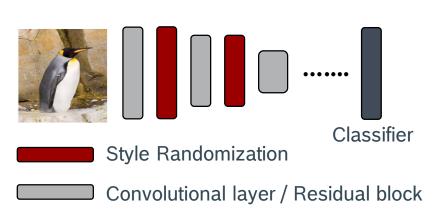
RCF edge map

Learning shape based representations Style Randomization (SR)

- ► Inspiration: A Style transfer technique Adaptive Instance Normalization (AdaIN)
 - \blacktriangleright aligns the statistics $\mu \& \sigma$ of the content features with those of the style feature.

$$AdaIN(x,y) = \sigma(y) \cdot \left(\frac{x - \mu(x)}{\sigma(x)}\right) + \mu(x)$$

- ▶ Style Randomization: In-network component to reduce texture bias of the network.
 - ▶ samples the statistics of feature maps from uniform distribution.



$$\begin{split} \widehat{X}_i &= \widehat{\sigma}_i. \left(\frac{X_i - \mu_i}{\sigma_i}\right) + \widehat{\mu}_i \\ s. \, t. \quad \widehat{\mu}_i &\sim \text{Uniform(-1, 1),} \\ X_i - it^h \text{ feature map} \\ \mu_i, \sigma_i - \text{mean \& std of } it^h \text{ feature map} \end{split}$$

Dataset

ImageNet20

Edible Items

Mushroom

Automobile

Animals / Birds / Insects African Elephant

German Shepherd

Arabian Camel

Tailed Frog

Sulphur Butterfly

Man-made objects

Tea Pot

Teddy Bear

Fur Coat

Architecture used: ResNet18

Kindly refer our paper for more results on ImageNet200, ResNet50, DenseNet121, MobileNetV2.

Evaluation of shape bias

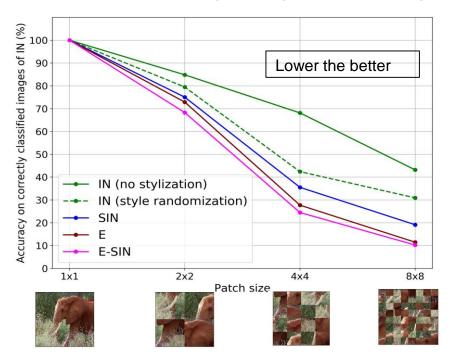
Shuffled patches evaluation on 653 validation images that are correctly classified by all networks.

IN – Network trained on ImageNet

SIN - Network trained on ImageNet + Stylized ImageNet (previous work)

E – Network trained on ImageNet + Edge Maps

E-SIN - Network trained on ImageNet + Edge Maps + Stylized ImageNet



▶ Texture-shape cue conflict

- ▶ #400 images whose shape label belongs to ImageNet20 class
- ▶ #100 images with texture and shape labels from ImageNet20

Networks	#400 images	#100 images	
	Shape results	Texture results	Shape results
IN (no stylization)	68	34	15
IN (style randomization)	86	20	18
SIN (previous work)	156	2	32
E (ours)	193	15	46
E-SIN (ours)	234	6	58

Shape label: Texture label:

Car Cat Cat Elephant Dog Car

g Elephant ır Dog

Evaluation on ImageNet-C corruptions

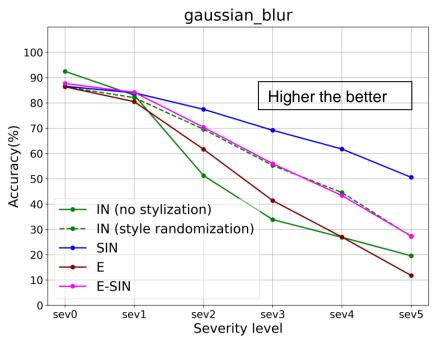
► Enhanced shape bias doesn't improve the robustness towards common corruptions.

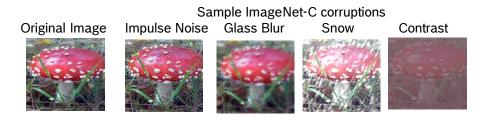
IN – Network trained on ImageNet

SIN - Network trained on ImageNet + Stylized ImageNet (previous work)

E - Network trained on ImageNet + Edge Maps

E-SIN - Network trained on ImageNet + Edge Maps + Stylized ImageNet





Networks	Average corruption accuracies (%)			mCA (%)	
	Noise	Blur	Weather	Digital	(Higher the better)
IN (no stylization)	50.4	57.81	69.25	76.03	64.69
IN (style randomization)	59.57	62.7	72.4	78.85	69.39
SIN (previous work)	74.54	72.67	78.36	83.05	77.64
E (ours)	60.65	48.07	66.09	71.54	62.01
E-SIN (ours)	72.03	58.31	73.51	80.67	71.55

• mCA - mean Corruption Accuracy across 15 corruptions

Study on corruption robustness Stylization variants

- ► Study contribution of different factors to understand their influence on corruption robustness.
 - Role of shape bias
 - ► Role of data augmentation via stylization
 - ► Role of style distribution
 - **Role of preserved image statistics**

Natural (IN) Edge (E)

Superposition

 $0.5 \cdot IN + 0.5 \cdot SE$

Study on corruption robustness

Stylization variants – Evaluation on ImageNet-C

Networks	Mean Corruption Accuracy (%)
IN	64.69
Е	62.01
SIN	77.64
SE	71.81
I-SIN	77.92
I-SE	70.3
Superposition	78.96

Study on corruption robustness Stylization variants – Final Evaluation

Networks	Input Image Composition			#100 Cue conflict images		Mean
	Natural image	Edge Map	Style transfer	Shape results	Texture results	Corruption Accuracy (%)
IN		X	X	11	39	64.69
SIN		X		34	2	77.64
E	X		X	46	15	62.01
SE	X			55	6	71.81
Superposition				22	13	78.96

Edge (E)

Superposition $0.5 \cdot IN + 0.5 \cdot SE$

Data augmentation of natural images via stylization is the reason for improved corruption robustness and not the shape bias!

Conclusion

- ► Improved the shape bias of a CNN using
 - ► Edge maps.
 - ► Style randomization.
- ▶ Shown that shape bias has no influence on corruption robustness.
- ▶ Performed a detailed analysis on the improved corruption accuracies on Stylized images.

Take away message: Data augmentation of natural images via stylization is the reason for improved corruption robustness and increased shape bias is only a byproduct.