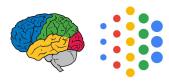
Learning Energy-based Models by Diffusion Recovery Likelihood

Ruiqi Gao¹, Yang Song², Ben Poole³, Ying Nian Wu¹, Diederik P. Kingma³

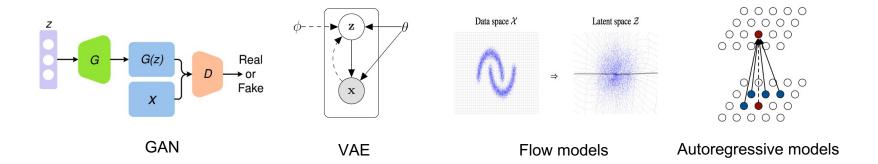
¹UCLA, ²Stanford University, ³Google Brain

arXiv: 2012.08125



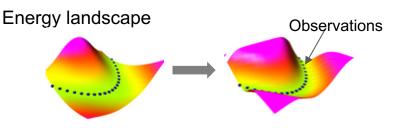
Generative models

Learning representations from data without labels



Energy-based models

Energy-based model (EBM)



$$p_{\theta}(\mathbf{x}) = \frac{1}{Z_{\theta}} \exp(f_{\theta}(\mathbf{x}))$$

- $Z_{\theta} = \int \exp(f_{\theta}(\mathbf{x})) d\mathbf{x}$: partition function, analytically intractable
- Energy function: $-f_{ heta}(\mathbf{x})$
- $f_{\theta} \colon \mathbb{R}^D \to \mathbb{R}$: free-form. Easy to incorporate structure knowledge
- a generative version of a discriminator

$$p_{\theta_k}(x) = \frac{1}{Z(\theta_k)} \exp[f_{\theta_k}(x)] \iff P(k|x) = \frac{\exp(f_{\theta_k}(x) + b_k)}{\sum_{l=1}^K \exp(f_{\theta_l}(x) + b_l)}$$

Two challenges for training EBMs

Maximum likelihood estimation (MLE): gradient approximately follows

$$\frac{\partial}{\partial \theta} \mathbb{E}_{p_{\text{data}}} [\log p_{\theta}(\mathbf{x})] = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \left[\frac{\partial}{\partial \theta} f_{\theta}(\mathbf{x}) \right] - \mathbb{E}_{\mathbf{x} \sim p_{\theta}} \left[\frac{\partial}{\partial \theta} f_{\theta}(\mathbf{x}) \right]$$
Expected gradient of energy w.r.t. data distribution
Expected gradient of energy w.r.t. model distribution

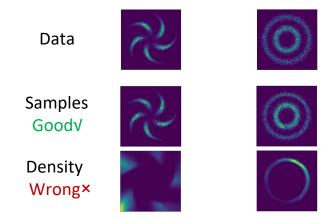
Challenge 1: requires MCMC to sample from model. Extremely expensive for high dimensional and multi-modal distributions. Difficult to converge.

E.g. Langevin dynamics

$$\mathbf{x}^{\tau+1} = \mathbf{x}^{\tau} + \frac{\delta^2}{2} \nabla_{\mathbf{x}} f_{\theta}(\mathbf{x}^{\tau}) + \delta \boldsymbol{\epsilon}^{\tau}, \ \boldsymbol{\epsilon}^{\tau} \ \sim \ \mathcal{N}(0, \boldsymbol{I}).$$

Two challenges for training EBMs

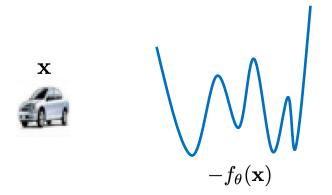
Challenge 2: density function learned with non-convergent MCMC can be malformed.



No even long-run MCMC samples remain realistic. (Nijkamp et al. 2019)

Our method

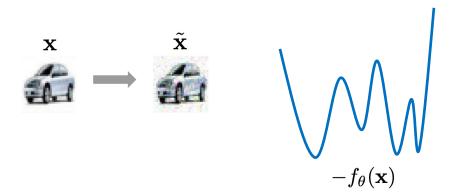
Q: Can we simplify the energy so that MCMC becomes easier?



Q: Can we simplify the energy so that MCMC becomes easier?

A: Yes! Switch attention from marginal to conditional distributions.

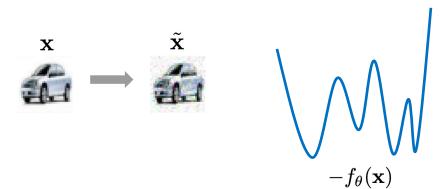
Assume
$$p_{ heta}(\mathbf{x}) = rac{1}{Z_{ heta}} \exp(f_{ heta}(\mathbf{x}))$$
 . Let $ilde{\mathbf{x}} = \mathbf{x} + \sigma oldsymbol{\epsilon}$



Q: Can we simplify the energy so that MCMC becomes easier?

A: Yes! Switch attention from marginal to conditional distributions.

Assume
$$p_{\theta}(\mathbf{x}) = \frac{1}{Z_{\theta}} \exp(f_{\theta}(\mathbf{x}))$$
. Let $\tilde{\mathbf{x}} = \mathbf{x} + \sigma \epsilon$, then we have
$$p_{\theta}(\mathbf{x}|\tilde{\mathbf{x}}) = \frac{1}{\tilde{Z}_{\theta}(\tilde{\mathbf{x}})} \exp\left(f_{\theta}(\mathbf{x}) - \frac{1}{2\sigma^2} \|\tilde{\mathbf{x}} - \mathbf{x}\|^2\right)$$



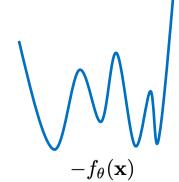
Q: Can we simplify the energy so that MCMC becomes easier?

A: Yes! Switch attention from marginal to conditional distributions.

Assume
$$p_{\theta}(\mathbf{x}) = \frac{1}{Z_{\theta}} \exp(f_{\theta}(\mathbf{x}))$$
. Let $\tilde{\mathbf{x}} = \mathbf{x} + \sigma \epsilon$, then we have
$$p_{\theta}(\mathbf{x}|\tilde{\mathbf{x}}) = \frac{1}{\tilde{Z}_{\theta}(\tilde{\mathbf{x}})} \exp\left(f_{\theta}(\mathbf{x}) - \frac{1}{2\sigma^2} \|\tilde{\mathbf{x}} - \mathbf{x}\|^2\right)$$

$$p_{ heta}(\mathbf{x}| ilde{\mathbf{x}}) = rac{1}{ ilde{Z}_{ heta}(ilde{\mathbf{x}})} \exp\left(f_{ heta}(\mathbf{x}) - rac{1}{2\sigma^2} \| ilde{\mathbf{x}} - \mathbf{x}\|^2
ight)$$

Localize the energy landscape



Q: Can we simplify the energy so that MCMC becomes easier?

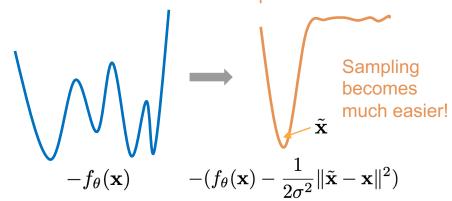
A: Yes! Switch attention from marginal to conditional distributions.

Assume
$$p_{\theta}(\mathbf{x}) = \frac{1}{Z_{\theta}} \exp(f_{\theta}(\mathbf{x}))$$
. Let $\tilde{\mathbf{x}} = \mathbf{x} + \sigma \epsilon$, then we have
$$p_{\theta}(\mathbf{x}|\tilde{\mathbf{x}}) = \frac{1}{\tilde{Z}_{\theta}(\tilde{\mathbf{x}})} \exp\left(f_{\theta}(\mathbf{x}) - \frac{1}{2\sigma^2} \|\tilde{\mathbf{x}} - \mathbf{x}\|^2\right)$$

$$p_{ heta}(\mathbf{x}| ilde{\mathbf{x}}) = rac{1}{ ilde{Z}_{ heta}(ilde{\mathbf{x}})} \exp\left(f_{ heta}(\mathbf{x}) - rac{1}{2\sigma^2} \| ilde{\mathbf{x}} - \mathbf{x}\|^2
ight)$$

Localize the energy landscape





Maximizing recovery likelihood

Define recovery log-likelihood function

$$\mathcal{J}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}(\mathbf{x}_{i} | \tilde{\mathbf{x}}_{i})$$

Maximizing recovery likelihood

Define recovery log-likelihood function

$$\mathcal{J}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}(\mathbf{x}_i | \tilde{\mathbf{x}}_i)$$

Same learning gradients as MLE, which approximately follows

$$\mathbb{E}_{\mathbf{x} \sim p_{ ext{data}}} \left[rac{\partial}{\partial heta} f_{ heta}(\mathbf{x})
ight] - \mathbb{E}_{\mathbf{x} \sim p_{ heta}} \left[rac{\partial}{\partial heta} f_{ heta}(\mathbf{x})
ight]$$

- Only need to run Langevin dynamics sampling from the conditional distribution, starting from $\tilde{\mathbf{x}}$

$$\mathbf{x}^{ au+1} = \mathbf{x}^{ au} + rac{\delta^2}{2} (
abla_{\mathbf{x}} f_{ heta}(\mathbf{x}^{ au}) + rac{1}{\sigma^2} (ilde{\mathbf{x}} - \mathbf{x}^{ au})) + \delta oldsymbol{\epsilon}^{ au}$$

Maximizing recovery likelihood

Define recovery log-likelihood function

$$\mathcal{J}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}(\mathbf{x}_i | \tilde{\mathbf{x}}_i)$$

Same learning gradients as MLE, which approximately follows

$$\mathbb{E}_{\mathbf{x} \sim p_{ ext{data}}} \left[rac{\partial}{\partial heta} f_{ heta}(\mathbf{x})
ight] - \mathbb{E}_{\mathbf{x} \sim p_{ heta}} \left[rac{\partial}{\partial heta} f_{ heta}(\mathbf{x})
ight]$$

- Only need to run Langevin dynamics sampling from the conditional distribution, starting from $\widetilde{\mathbf{x}}$

$$\mathbf{x}^{ au+1} = \mathbf{x}^{ au} + rac{\delta^2}{2} (
abla_{\mathbf{x}} f_{ heta}(\mathbf{x}^{ au}) + rac{1}{\sigma^2} (ilde{\mathbf{x}} - \mathbf{x}^{ au})) + \delta oldsymbol{\epsilon}^{ au}$$

- Maximizing recovery likelihood gives a consistent estimator of heta in $p_{ heta}(\mathbf{x})$!

Diffusion recovery likelihood

We propose to learn a sequence of recovery likelihoods on diffusion data

$$\mathbf{x}_0 \sim p_{\text{data}}(\mathbf{x}); \ \mathbf{x}_{t+1} = \sqrt{1 - \sigma_{t+1}^2} \mathbf{x}_t + \sigma_{t+1} \boldsymbol{\epsilon}_{t+1}, \ t = 0, 1, ... T - 1.$$

Let
$$\mathbf{y}_t = \sqrt{1 - \sigma_{t+1}^2} \mathbf{x}_t$$
, assume a sequence of conditional EBMs

$$p_{\theta}(\mathbf{y}_t|\mathbf{x}_{t+1}) = \frac{1}{\tilde{Z}_{\theta,t}(\mathbf{x}_{t+1})} \exp\left(f_{\theta}(\mathbf{y}_t,t) - \frac{1}{2\sigma_{t+1}^2} \|\mathbf{x}_{t+1} - \mathbf{y}_t\|^2\right).$$

Diffusion recovery likelihood

We propose to learn a sequence of recovery likelihoods on diffusion data

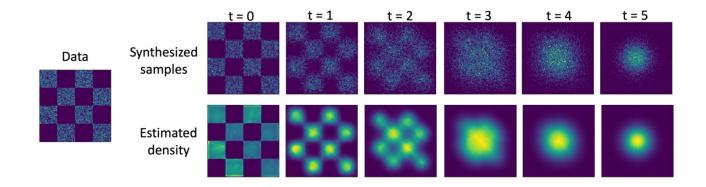
$$\mathbf{x}_0 \sim p_{\text{data}}(\mathbf{x}); \ \mathbf{x}_{t+1} = \sqrt{1 - \sigma_{t+1}^2} \mathbf{x}_t + \sigma_{t+1} \boldsymbol{\epsilon}_{t+1}, \ t = 0, 1, ... T - 1.$$

Let
$$\mathbf{y}_t = \sqrt{1 - \sigma_{t+1}^2} \mathbf{x}_t$$
, assume a sequence of conditional EBMs

$$p_{\theta}(\mathbf{y}_{t}|\mathbf{x}_{t+1}) = \frac{1}{\tilde{Z}_{\theta,t}(\mathbf{x}_{t+1})} \exp\left(\mathbf{f}_{\theta}(\mathbf{y}_{t},t) - \frac{1}{2\sigma_{t+1}^{2}} \|\mathbf{x}_{t+1} - \mathbf{y}_{t}\|^{2}\right).$$

Diffusion recovery likelihood

We propose to learn a sequence of recovery likelihoods on diffusion data.



Learning from conditional distributions gives accurate marginal density estimations!

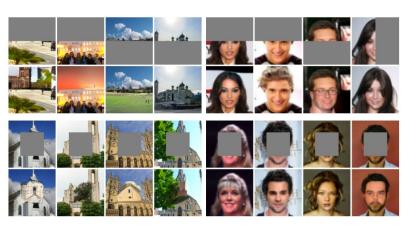
Results

High fidelity image generation

Table 1: FID and inception scores on CIFAR-10.

Model	FID↓	Inception ↑
GAN-based		
WGAN-GP (Gulrajani et al., 2017)	36.4	$7.86 \pm .07$
SNGAN (Miyato et al., 2018)	21.7	$8.22 \pm .05$
SNGAN-DDLS (Che et al., 2020)	15.42	$9.09 \pm .10$
StyleGAN2-ADA (Karras et al., 2020)	3.26	$\textbf{9.74} \pm .05$
Score-based		
NCSN (Song & Ermon, 2019)	25.32	$8.87 \pm .12$
NCSN-v2 (Song & Ermon, 2020)	10.87	$8.40 \pm .07$
DDPM (Ho et al., 2020)	3.17	$9.46\pm.11$
Explicit EBM-conditional		
CoopNets (Xie et al., 2019)	-	7.30
EBM-IG (Du & Mordatch, 2019)	37.9	8.30
JEM (Grathwohl et al., 2019)	38.4	8.76
Explicit EBM		
Muli-grid (Gao et al., 2018)	40.01	6.56
CoopNets (Xie et al., 2016a)	33.61	6.55
EBM-SR (Nijkamp et al., 2019b)	-	6.21
EBM-IG (Du & Mordatch, 2019)	38.2	6.78
Ours (<i>T6</i>)	9.58	8.30 \pm .11

Image interpolation & inpainting



Steady long-run MCMC chains

Short-run samples look fine for both methods. (100 steps)

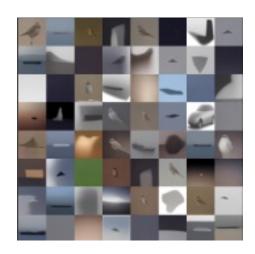
Ours

Learning marginal p(x) by short-run MCMC

Steady long-run MCMC chains

Our samples remain realistic even after 100,000 steps.

Ours



Learning marginal p(x) by short-run MCMC

Estimation of normalized density

Estimate Z_{θ} by annealing importance sampling (AIS).

First to get competitive likelihood estimation using EBM on image datasets.

Table 4: Test bits per dimension on CIFAR-10.

Model	BPD↓
DDPM (Ho et al., 2020)	3.70
Glow (Kingma & Dhariwal, 2018)	3.35
Flow++ (Ho et al., 2019)	3.08
GPixelCNN (Van den Oord et al., 2016)	3.03
Sparse Transformer (Child et al., 2019)	2.80
DistAug (Jun et al., 2020)	2.56
Ours † $(T1k)$	3.18

Thank you