

Learning and Evaluating Representations for Deep One-class Classification

Google Cloud Al Research
Kihyuk Sohn*, Chun-Liang Li*, Jinsung Yoon, Minho Jin, Tomas Pfister

One-class Classification

 Finding decision boundary between "inlier" and "outlier" without knowing outlier distribution.

- Many real-world applications
 - Anomaly detection (e.g., fraud detection, manufacturing defect detection).
 - Out-of-distribution detection.

Existing methods

- Discriminative models
 - One-class Support Vector Machine [Scholkopf, 2000].
 - Support Vector Data Description [Tax and Duin, 2004].
- Generative models
 - Kernel Density Estimation (KDE) [Latecki, 2007].
 - Auto-encoder [Zong, 2018], flow-based density estimators [Kirichenko, 2020], ...

Require good representations.

Existing methods

- End-to-end learning of deep representation and classifier
 - Deep one-class classification [Ruff, 2018]
 - Hypersphere collapse
 - Require additional training technique to avoid degenerate solutions
 - Outlier exposure [Hendrycks, 2019]
 - Mismatch between proxy task and downstream one-class classification task.

How do we achieve the best of both worlds?

Our contribution

- A two-stage framework for deep one-class classification
 - Improved learning of self-supervised representations.
 - Discriminative and generative one-class classifiers on deep representations.
- State-of-the-art performance on semantic one-class classification
 - CIFAR-10/100, Fashion MNIST, Cat-vs-Dog, CelebA.
 - Visual explanation of deep one-class classifier.
 - Evaluation on semi-supervised and unsupervised one-class classification settings.
- Application to manufacturing defect detection
 - Strong performance improvement on MVTec anomaly detection dataset on anomaly detection and localization.

Our contribution

- A two-stage framework for deep one-class classification
 - Improved learning of self-supervised representations.
 - Discriminative and generative one-class classifiers on deep representations.
- State-of-the-art performance on semantic one-class classification
 - CIFAR-10/100, Fashion MNIST, Cat-vs-Dog, CelebA.
 - Visual explanation of deep one-class classifier.
 - Evaluation on semi-supervised and unsupervised one-class classification settings.
- Application to manufacturing defect detection
 - Strong performance improvement on MVTec anomaly detection dataset on anomaly detection and localization.

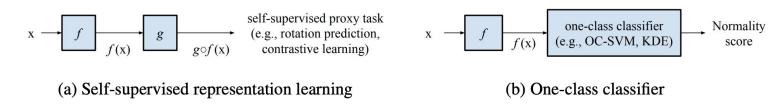
Our contribution

- A two-stage framework for deep one-class classification
 - Improved learning of self-supervised representations.
 - Discriminative and generative one-class classifiers on deep representations.
- State-of-the-art performance on semantic one-class classification
 - CIFAR-10/100, Fashion MNIST, Cat-vs-Dog, CelebA.
 - Visual explanation of deep one-class classifier.
 - Evaluation on semi-supervised and unsupervised one-class classification settings.

Application to manufacturing defect detection

 Strong performance improvement on MVTec anomaly detection dataset on anomaly detection and localization.

Two-stage framework for Deep One-class Classification



- a) Representation learning via self-supervision
 - Rotation prediction, contrastive learning, ...
- b) Off-the-shelf one-class classifier on learned representations
 - One-class SVM, Kernel Density Estimation (KDE), ...
- Why two stage?
 - High-quality deep representation + faithful one-class classifier.

Improving Self-supervised Representations

- Rotation prediction [Gidaris, 2018, Golan and El-Yaniv, 2018]
 - Adopt MLP projection head at representation learning.
- Contrastive learning of representations [Chen, 2020]
 - Less compatible for OCC (e.g., class collision [Saunshi, 2019] and uniformity [Wang and Isola, 2020]).
 - Large Small batch training.
 - Distribution augmentation with geometric transformations (DA-CLR).

Experiments

- CIFAR-10/100, Fashion-MNIST, Cat-vs-Dog, CelebA
- Data from a single class as inlier, rest as outlier

Inlier

Outlier (not available at training)

End-to-end vs Two-stage framework

AUC ↑	C10	C100	f-MNIST	Cat-vs-Dog	CelebA
Rotation classifier	86.8	80.3	87.4	86.1	51.4
KDE	89.3	81.9	94.6	86.4	77.4

Two-stage framework > End-to-end

MLP projection head

AUC ↑	C10	C100	f-MNIST	Cat-vs-Dog	CelebA
Rotation classifier	86.8	80.3	87.4	86.1	51.4
KDE	89.3	81.9	94.6	86.4	77.4
+ MLP head	91.3	84.1	95.8	86.4	69.5

MLP projection head <u>improves</u> the performance of Rotation prediction representations.

Contrastive Representation

AUC ↑	C10	C100	f-MNIST	Cat-vs-Dog	CelebA
Rotation classifier	86.8	80.3	87.4	86.1	51.4
KDE	89.3	81.9	94.6	86.4	77.4
+ MLP head	91.3	84.1	95.8	86.4	69.5
Contrastive	89.0	82.4	93.6	87.7	84.6

Contrastive representation is <u>not as good as</u>
Rotation prediction representation with MLP head.

Distribution-augmented Contrastive Representation

AUC ↑	C10	C100	f-MNIST	Cat-vs-Dog	CelebA
Rotation classifier	86.8	80.3	87.4	86.1	51.4
KDE	89.3	81.9	94.6	86.4	77.4
+ MLP head	91.3	84.1	95.8	86.4	69.5
Contrastive	89.0	82.4	93.6	87.7	84.6
Contrastive (DA)	92.4	86.5	94.5	89.6	85.6

Distribution-augmented Contrastive representation performs the <u>best</u>.

Visual Explanation

 Gradient-based visual explanation techniques (e.g., Integrated Gradient, GradCAM) can be used.

Dog-vs-Cat No eyeglasses-vs-eyeglasses (b) DA-CLR (c) RotNet (d) RotNet (a) input (b) DA-CLR (c) RotNet (d) RotNet (a) input + KDE + KDE + KDE + KDE

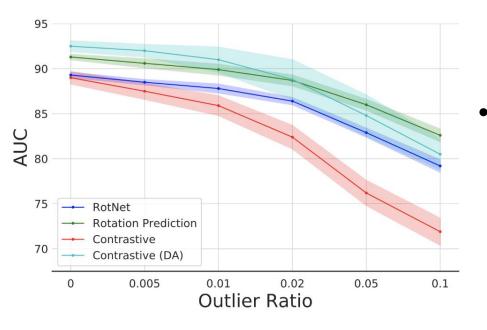
Visual Explanation

 Gradient-based visual explanation techniques (e.g., Integrated Gradient, GradCAM) can be used.

Dog-vs-Cat No eyeglasses-vs-eyeglasses (b) DA-CLR (c) RotNet (d) RotNet (a) input (b) DA-CLR (c) RotNet (d) RotNet (a) input + KDE + KDE + KDE + KDE

Realistic Evaluation of One-class Classification

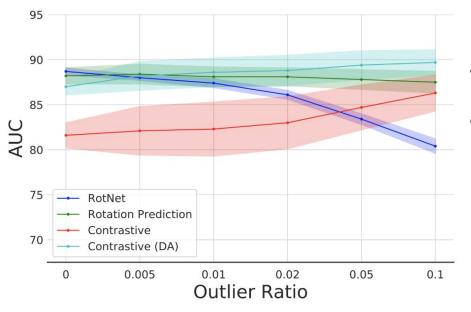
• Unsupervised: training data contains a small fraction of outliers



Rotation prediction is more robust than contrastive representation.

Realistic Evaluation of One-class Classification

Semi-supervised: unsupervised representation + OCC with 50 inlier data



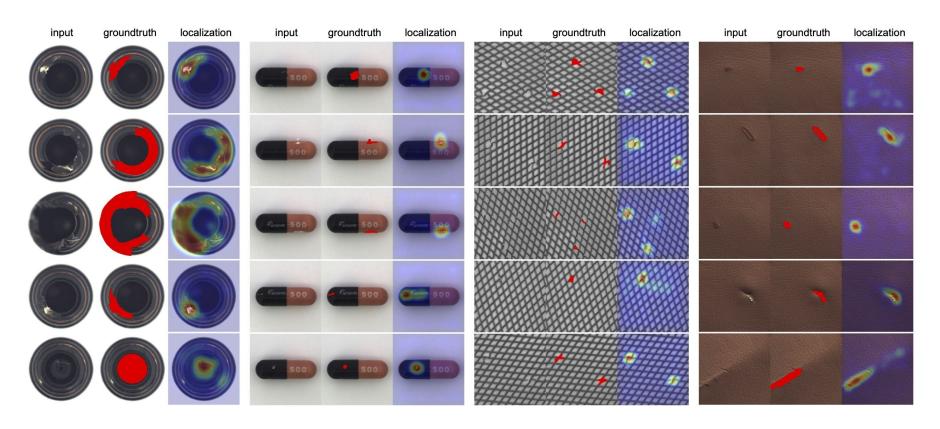
- contrastive representation outperforms rotation prediction.
- The more noisy, the better the contrastive representation.

Experiments on MVTec Anomaly Detection

	RotNet	RotNet + KDE	+ MLP head	Contrastive	Contrastive (DA)
Detection	71.0	83.5	86.3	80.2	86.5
Localization	75.6	92.6	93.0	85.6	90.4

- <u>Effectiveness</u> of two-stage framework, MLP head, distribution-augmented contrastive representation holds.
- No clear advantage of contrastive representation.

Visualization on MVTec Anomaly Localization



Conclusion

- A two-stage framework for deep one-class classification.
- State-of-the-art performance on semantic one-class classification.
- Strong improvement on manufacturing defect detection and localization.

Stay Tuned!

- CutPaste: Self-supervised learning for anomaly detection and localization.
 - To appear at CVPR 2021.
 - State-of-the-art defect detection and localization performance via two-stage framework + novel distribution augmentation strategy.