Analyzing and Improving Normalization Techniques of Embedding-Based Zero-Shot Learning Classifiers

Ivan Skorokhodov, Mohamed Elhoseiny

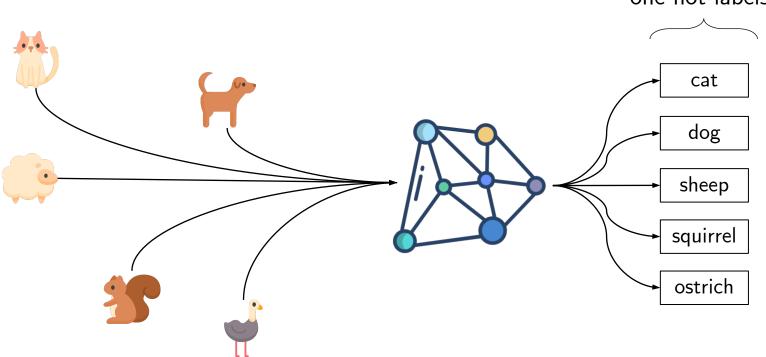
Overview

- In the work, we (mainly) explore *zero-shot learning* models: models which perform classification based on *semantic class attributes* instead of one-hot class labels
- ZSL models (typically) use 2 normalization tricks: (scaled cosine similarity and attributes normalization)
 - They were shown to be very important in practice
 - But there is no good understanding of their influence
- In our work, we tried to "explain" these tricks by analyzing the variance of logits and activations
 - and found them working worse when the model depth increases
- This motivated us to develop *class normalization*: a BatchNorm-like mechanism for some specific component of a ZSL model
- It allowed to achieve state-of-the-art performance with a very simple model
- We also formulated a ``generalized'' version of ZSL: continual zero-shot learning
 - + formulated some metrics to evaluate a CZSL model

What is zero-shot learning (ZSL)?

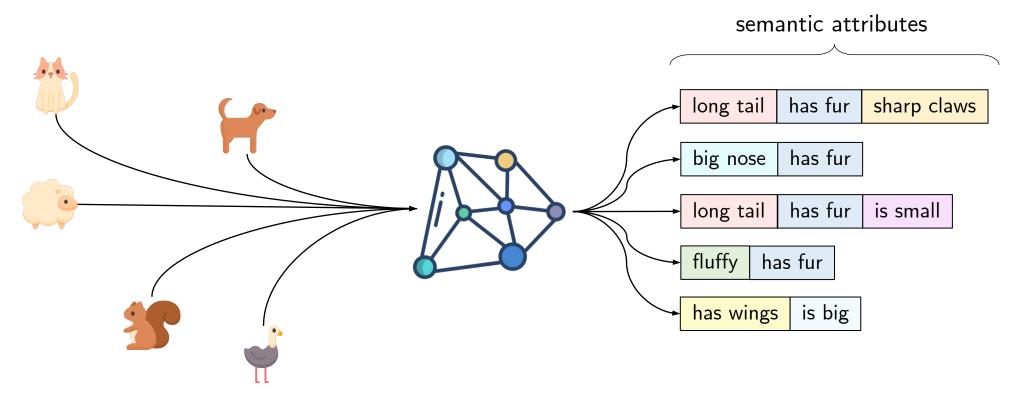
Traditional (non-ZSL) classification matches images with class labels:

one-hot labels



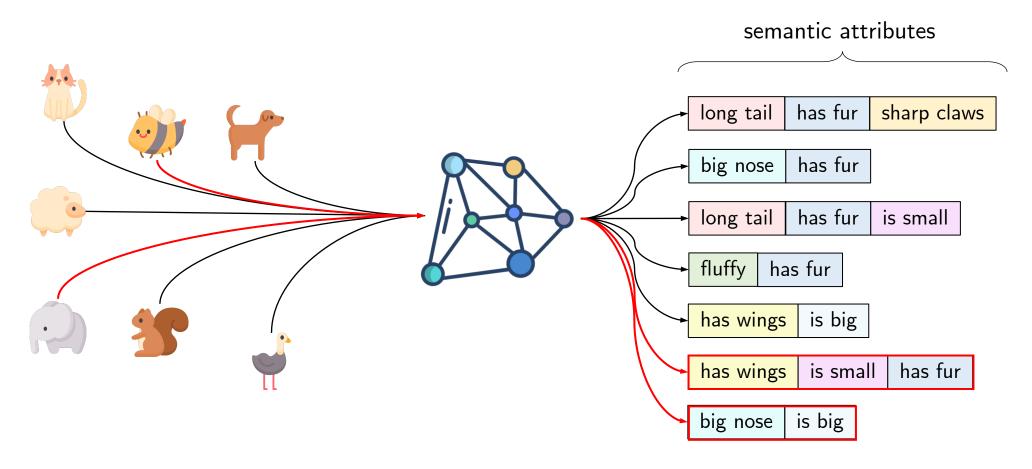
What is zero-shot learning (ZSL)?

ZSL classification matches images with semantic class attributes:

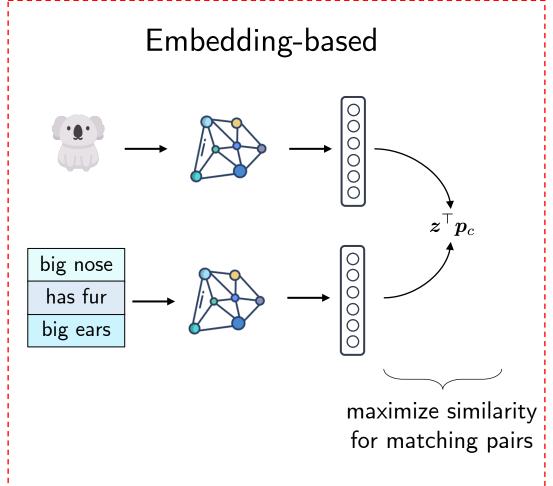


What is zero-shot learning (ZSL)?

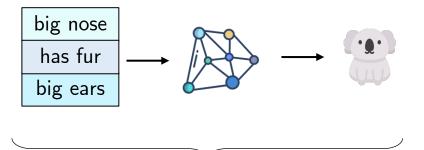
...and deals with novel classes at test time:



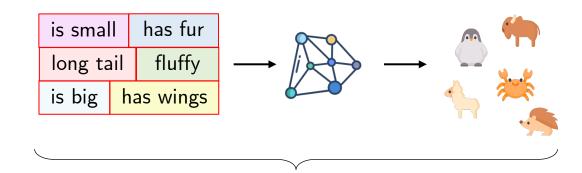
Two paradigms in ZSL



Generative-based



train a generator to synthesize images from attributes



In our work, we follow the embedding-based paradigm

generate images of unseen classes at test time and train a classifer

Embedding-based ZSL

- Embedding-based ZSL model has two components:
 - image embedder $z = E_h x_c$
 - class attribute embedder $p_c = P(a_c)$
- Typically, E(x) is pretrained on ImageNet for traditional classification task and then kept fixed
 - In this way, only $P(\boldsymbol{a}_c)$ is trained
- The model is optimized with the vanilla cross-entropy loss:

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} \sum_{c=1}^{K} [y^{(n)} = c] \cdot \ln \hat{y}_{c}^{(n)}$$

But in contrast to a traditional classifier, which predicts a logit as $\hat{y} = f(x)$, the embedding-based ZSL model uses a semantic attribute vector:

$$\hat{y}_c^{(n)} = (oldsymbol{E}(oldsymbol{x}^{(n)}))^ op oldsymbol{P}(oldsymbol{a}_c)$$

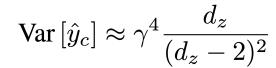
This formulation allows to use at test time such $m{a}_c$ that have not been seen during training (and classify images of unseen classes)

Normalization techniques in the embedding-based ZSL

1. Scaled cosine similarity (when computing logits):

Stabilizes logits' variance:

$$\hat{y}_c = oldsymbol{z}^ op oldsymbol{p}_c \Longrightarrow \hat{y}_c = \gamma^2 rac{oldsymbol{z}^ op oldsymbol{p}_c}{\|oldsymbol{z}\| \|oldsymbol{p}_c\|}$$



2. Attributes normalization:

Stabilizes representations' variance:

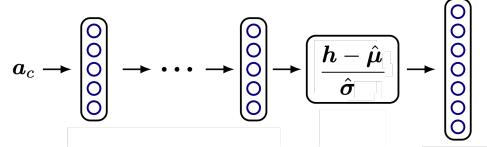
$$\operatorname{Var}[\tilde{y}_c] = \operatorname{Var}[z^{\top} \boldsymbol{p}_c] = \operatorname{Var}[z_i]$$

$$oldsymbol{a}_c \longmapsto oldsymbol{a}_c/\|oldsymbol{a}_c\|_2$$

But only for a linear attribute embedder $P(\boldsymbol{a}_c)$

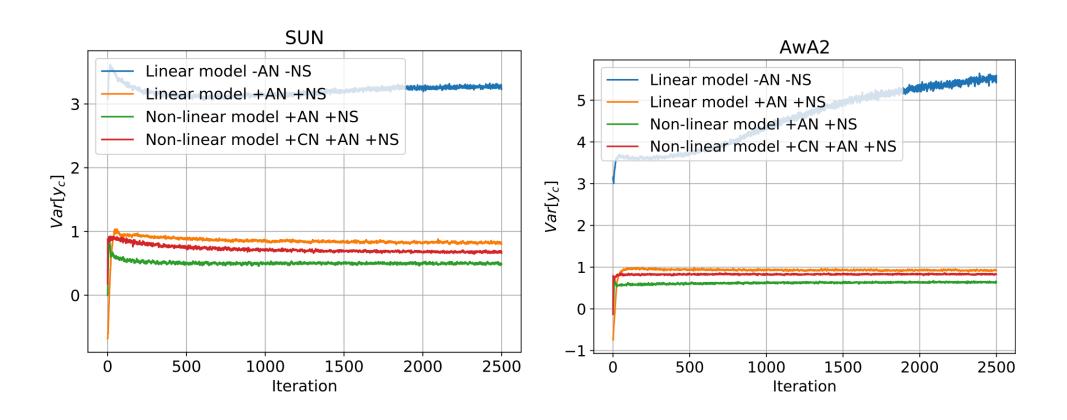
Class Normalization (CN)

• to stabilize variance in a *deep* attribute embedder, we propose *class normalization:*



- here $\hat{\mu}$, $\hat{\sigma}$ are minibatch mean/std statistics
- it is like batch normalization, but:
 - is applied in the attribute embedder module (i.e. class-wise)
 - does not use scaling or shifting

Empirical analysis of the variance



Logits variance across a minibatch for different models on SUN and AwA2 datasets

GZSL results

	U	SUN S	Н	U	CUB S	Н	U	AwA1	Н	U	AwA2 S	2 H	Avg training time
DCN (Liu et al., 2018)	25.5	37.0	30.2	28.4	60.7	38.7	<u>'</u> I _			 25.5	84.2	30 1	50 min
RN (Sung et al., 2018)	25.5	<i>51.</i> 0				47.0				1			
f-CLSWGAN (Xian et al., 2018b)	12.6	36.6		1		49.7					<i>))</i> . ¬	₹3.3	33 IIIII
CIZSL (Elhoseiny & Elfeki, 2019)	42.0	50.0	27.8	ı		49.1 -			33.0	_	-	24.6	2 hours
CVC-ZSL (Li et al., 2019)	26.2	12.8				47.5			60.1	56.4	21 /		
SGMA (Zhu et al., 2019)	30.3	42.0		l		48.5					87.1		1
, , ,	12.0	21.2		1		45.9							
SGAL (Yu & Lee, 2019)				l						1	01.2	03.0	50 min
DASCN (Ni et al., 2019)						51.6					70.6	-	-
F-VAEGAN-D2 (Xian et al., 2019)				l		53.6					70.6		1
TF-VAEGAN (Narayan et al., 2020)	45.6	40.7	43.0	ı			1			1	75.1		1
EPGN (Yu et al., 2020)	-	-	-			56.2		83.4					
DVBE (Min et al., 2020)	45.0	37.2	40.7	53.2	60.2	56.5	-	-	-	63.6	70.8	67.0	-
LsrGAN (Vyas et al., 2020)	44.8	37.7	40.9	48.1	59.1	53.0	-	-	-	54.6	74.6	63.0	1.25 hours
ZSML (Verma et al., 2020)	-	-	-	60.0	52.1	55.7	57.4	71.1	63.5	58.9	74.6	65.8	-
3-layer MLP	31.4	40.4	35.3	45.2	48.4	46.7	57.0	69.9	62.8	54.5	72.2	62.1	
3-layer MLP + Eq. (9)	41.5	41.3	41.4	49.4	48.6	49.0	60.1	73.0	65.9	60.3	75.6	67.1	20 seconds
3-layer MLP + Eq. (10)	24.1	37.9	29.5	45.3	44.5	44.9	58.4	70.7	64.0	52.1	72.0	60.5	30 seconds
3-layer MLP + CN (i.e. $(9) + (10)$)	44.7	41.6	43.1	49.9	50.7	50.3	63.1	73.4	67.8	60.2	77.1	67.6	

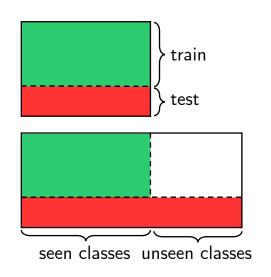
Continual Zero-Shot Learning

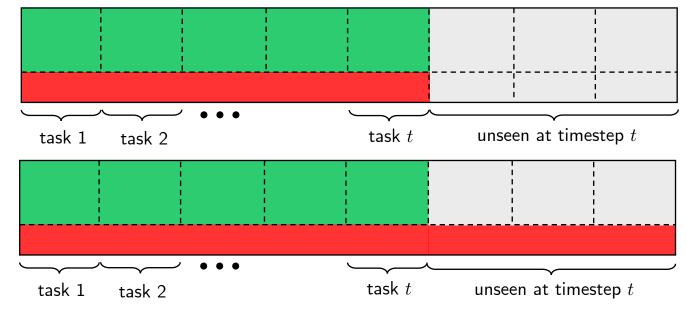
Traditional learning

Zero-shot learning (generalized setting)

Traditional continual learning

Continual ZSL (our formulation)





CZSL results

		C	UB		SUN						
	mAUC ↑	mH ↑	mJA ↑	Forgetting \(\psi \)	mAUC↑	mH†	mJA†	Forgetting ↓			
EWC-online (Schwarz et al., 2018)	11.6	18.0	25.4	0.08	2.7	9.6	11.4	0.02			
EWC-online + ClassNorm	14.1 ^{+22%}	$23.3^{+29\%}$	28.6 ^{+13%}	0.04 ^{-50%}	4.8 ^{+78%}	14.3 ⁺⁴	^{9%} 15.8 ^{+39%}	$0.03^{+50\%}$			
MAS-online (Aljundi et al., 2017)	11.4	17.7	25.1	0.08	2.5	9.4	11.0	0.02			
MAS-online + ClassNorm	$14.0^{+23\%}$	23.8 ^{+34%}	$28.5^{+14\%}$	$0.05^{-37\%}$	4.8 ^{+92%}	14.2^{+5}	^{1%} 15.8 ^{+44%}	$0.03^{+50\%}$			
A-GEM (Chaudhry et al., 2019)	10.4	17.3	23.6	0.16	2.4	9.6	10.8	0.05			
A-GEM + ClassNorm	13.8 ^{+33%}	23.8 ^{+38%}	28.2 ^{+19%}	$0.06^{-62\%}$	4.6 ^{+92%}	14.2 ⁺⁴	8% 15.4 ⁺⁴³ %	$0.04^{-20\%}$			
Sequential	9.7	17.2	22.6	0.17	2.3	9.3	10.4	0.05			
Sequential + ClassNorm	$13.5^{+39\%}$	$23.0^{+34\%}$	27.9 ⁺²³ %	$0.05^{-71\%}$	4.6 ^{+99%}	14.0^{+5}	^{1%} 15.3 ^{+47%}	$0.03^{-40\%}$			
Multi-task	23.4	24.3	39.6	0.00	4.2	12.5	14.9	0.00			
Multi-task + ClassNorm	26.5+13%	30.0 ^{+23%}	42.6 ^{+8%}	0.01	6.2+48%	14.8+1	8% 18.5 ⁺²⁴ %	0.01			

Thank you!