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An overview of auto-regressive models
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* Very powerful / large capacity

* Slow/Unnatural inference for traditional auto-regressive model
* PixelCNN, PixelCNN++, Image-transtformer, Gated-Pixel CNN, WaveNet, ViT,

etc
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Autoregressive on the spectral space

* Training autoregressive model on spectral space, e.g. latent space
projected by the PCA matrix
* Lossless
* Support anytime sampling :
e Trade-off on the fly to accommodate instantaneous resource (Adapftive /)
* Progressively generation

o) Inferior likelihoods / sample quality.



Learning the spectral space by Ordered Auto-encoder

Objective to induce the spectral space:

- Recover PCA if we pick proper MLPs as encoder / decoder —
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Ordered VQ-VAE

Apply the ordered autoencoder framework to the vector quantized variational autoencoder (VQ-VAE)
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- Discrete latent codes

- Channel-Wise Quantization

Figure 2: MNIST (top) and CelebA (bottom) samples gen-
erated with 1/4 of the code length. Left: Spatial-wise quanti-
zation. Right: Channel-wise quantization.



Ordered VQ-VAE

spatial-wise
(M« W) = (1 = L)

reconstructed
data



Anytime Sampling

- Training auto-regressive model on the learned spectral space:
Ex-post density estimation on the discrete codes
- We use Transformer as the auto-regressive model
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Spectral codes: ordering like PCA!
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Figure 3: Ordered vs. unordered codes on CIFAR-10.



- Strictly superior anytime sampling performance !

FID Score

Image generation

Linearly increasing inference time
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(b) Inference speed



Image generation
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(a) MNIST (b) CIFAR-10 (c) CelebA



Samples on the same priority code
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Summary

* Propose an anytime sampling framework that can naturally trade-oft
computation resources with sample quality.

* With both theoretical arguments and empirical evidence, we show that
ordered autoencoders can induce a valid ordering that facilitates
anytime sampling.

* The sample quality of the anytime sampler degrades gracefully as we
gradually reduce the code length.



