Quantifying Differences in Reward Functions

Adam Gleave, Michael Dennis, Shane Legg, Stuart Russell, Jan Leike

Example: Push Notifications

Reward Function Specification

Hand **Designed**

Demonstrations

Preference Comparisons

Reward Labels

Comparing Reward Functions

V.S.

Prior Work: Rollout Evaluation

Prior Work: Rollout Evaluation

We learn rewards, not policies.

So let's evaluate rewards, not policies.

Equivalent Rewards Should Be Treated as Equal

Requirement: if two reward functions incentivize the same behaviour, then the comparison should treat them as equal.

Optimal policy preserving transformations:

- Positive affine: $\lambda R + c \equiv R$ for $\lambda > 0$ and $c \in \mathbb{R}$.
- Potential shaping: moving reward in time.

Equivalent-Policy Invariant Comparison (EPIC)

Canonicalization

The canonical reward R^{C} is a shaped and shifted version of R such that the mean reward leaving any state s is zero:

$$\mathbb{E}_{A,S'}\Big[R^C(s,A,S')\Big] = 0$$

where action A and next state S' are random variables.

 R^{C} can be expressed in terms of expectations on R.

Pearson distance

Pearson correlation coefficient: affine-invariant similarity.

Coverage distribution: \mathcal{D} over transitions.

Pearson distance:

$$\frac{1}{\sqrt{2}}\sqrt{1-\rho(R_A,R_B)}.$$

Equivalent-Policy Invariant Comparison (EPIC)

EPIC is a distance

Standard properties:

- Symmetry.
- Triangle inequality.

Other properties:

- Bounded on [0,1].
- Zero distance between equivalent rewards.

EPIC is fast

Runtime for reward comparisons in a simple control task:

EPIC is fast

Method	Seeds	Runtime
Rollout	3	4h:5m:45s
EPIC (8192 samples)	3	0h:0m:17s
EPIC (65,536 samples)	30	1h:52m:18s

EPIC is easy to use

EPIC hyperparameters:

- Coverage distribution.
- Number of samples.

Rollout hyperparameters:

- RL algorithm.
- Number of timesteps.
- Batch size.
- Learning rate.
- Entropy coefficient.
- ... and many more!

EPIC is easy to use: choosing number of samples

More samples: higher accuracy, slower speed.

Rule of thumb: increase samples until CI is small enough.

EPIC is easy to use: coverage distribution

Coverage distribution: \mathcal{D} over transitions.

Narrow coverage: overestimates similarity.

Broad coverage: underestimates similarity.

EPIC is easy to use: coverage distribution

EPIC predicts policy return

The difference in return G of optimal policies π_A^* and π_B^* for rewards R_Δ and R_B is bounded by the EPIC distance:

$$G_{R_A}(\pi_A^*) - G_{R_A}(\pi_B^*) \le K(\mathcal{D})||R_A||_2 D_{\text{EPIC}}(R_A, R_B)$$

where $K(\mathcal{D})$ is a constant that depends on the support of the EPIC coverage distribution.

EPIC predicts policy return

Train

Test

Thanks!

Blog: gleave.me/epicblog

Paper: gleave.me/epicpaper

GitHub: gleave.me/epicsrc

Adam Gleave

Michael Dennis

Shane Legg

Jan Leike

Stuart Russell

