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Example: Push Notifications
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Reward Function Specification
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Comparing Reward Functions
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Prior Work: Rollout Evaluation
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Prior Work: Rollout Evaluation
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We learn rewards,
not policies.

So let’s evaluate
rewards, not policies.
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Equivalent Rewards Should Be Treated as Equal

Requirement: if two reward functions incentivize the same
behaviour, then the comparison should treat them as equal.

Optimal policy preserving transformations:

e Positive affine:AR+c=RforA>0andc € R.
e Potential shaping: moving reward in time.
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Equivalent-Policy Invariant Comparison (EPIC)
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Canonicalization

The canonical reward R is a shaped and shifted version of R
such that the mean reward leaving any state s is zero:

EA,S' [RO(S, A, S’)] =0

where action A and next state S’ are random variables.

R can be expressed in terms of expectations on R.
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Pearson distance

Pearson correlation coefficient: affine-invariant similarity.
Coverage distribution: ) over transitions.

Pearson distance:

%\/1 — p(R4, Rp).
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Equivalent-Policy Invariant Comparison (EPIC)
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EPIC is adistance

Standard properties:
e Symmetry.

e Triangle inequality.
Other properties:

e Boundedon[O0,1].
e Zerodistance between equivalent rewards.

>0



EPIC is fast

Runtime for reward comparisons in a simple control task:
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EPIC is fast

Method Seeds Runtime
Rollout 3 4h:5m:45s
EPIC (8192 samples) 3 Oh:0m:17s
EPIC (65,536 samples) 30 1h:52m:18s
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EPIC is easy to use

EPIC hyperparameters: Rollout hyperparameters:

e Coveragedistribution. RL algorithm.

e Number of samples. Number of timesteps.
Batch size.

Learning rate.
Entropy coefficient.
...and many more!
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EPIC is easy to use: choosing number of samples

More samples: higher accuracy, slower speed.

Rule of thumb: increase samples until Cl is small enough.
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EPIC is easy to use: coverage distribution

Coverage distribution: ) over transitions.

Narrow coverage: overestimates similarity.

Broad coverage: underestimates similarity.
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EPIC is easy to use: coverage distribution
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EPIC predicts policy return

The difference in return G of optimal policies WZ and Wz for
rewards R, and R; is bounded by the EPIC distance:

where K (D) is a constant that depends on the support of the
EPIC coverage distribution.

>0
—



EPIC predicts policy return
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Thanks!

Blog: gleave.me/epicblog
Paper: gleave.me/epicpaper
GitHub: gleave.me/epicsrc
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