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Example: Push Notifications

Gauci et al (2018). Horizon: Facebook's Open Source Applied Reinforcement Learning Platform. (Section 9.1)
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We learn rewards,
not policies.

So let’s evaluate 
rewards, not policies.



Optimal policy preserving transformations:

● Positive affine: λR + c ≡ R for λ > 0 and c ∈ ℝ.
● Potential shaping: moving reward in time.

Equivalent Rewards Should Be Treated as Equal

Requirement: if two reward functions incentivize the same 

behaviour, then the comparison should treat them as equal.
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Canonicalization

The canonical reward RC
 
 is a shaped and shifted version of R 

such that the mean reward leaving any state s is zero:

where action A and next state S’ are random variables.

RC can be expressed in terms of expectations on R.



Pearson distance

Pearson correlation coefficient: affine-invariant similarity.

Coverage distribution:         over transitions.

Pearson distance:
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EPIC is a distance

Standard properties:

● Symmetry.
● Triangle inequality.

Other properties:

● Bounded on [0,1].

● Zero distance between equivalent rewards.



EPIC is fast

Runtime for reward comparisons in a simple control task:



EPIC is fast

Method Seeds Runtime

Rollout 3 4h:5m:45s

EPIC (8192 samples) 3 0h:0m:17s

EPIC (65,536 samples) 30 1h:52m:18s



EPIC is easy to use

EPIC hyperparameters:

● Coverage distribution.
● Number of samples.

Rollout hyperparameters:

● RL algorithm.
● Number of timesteps.
● Batch size.
● Learning rate.
● Entropy coefficient.
● … and many more!



EPIC is easy to use: choosing number of samples

More samples: higher accuracy, slower speed.

Rule of thumb: increase samples until CI is small enough.



EPIC is easy to use: coverage distribution

Coverage distribution:         over transitions.

Narrow coverage: overestimates similarity.

Broad coverage: underestimates similarity.



EPIC is easy to use: coverage distribution



The difference in return G of optimal policies          and           for 
rewards R

A
 and R

B
 is bounded by the EPIC distance:

where             is a constant that depends on the support of the 
EPIC coverage distribution.

EPIC predicts policy return



EPIC predicts policy return
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Blog: gleave.me/epicblog                 
Paper: gleave.me/epicpaper
GitHub: gleave.me/epicsrc

Thanks!

https://gleave.me/epicblog
https://gleave.me/epicpaper
https://gleave.me/epicsrc

