
Quantifying Differences
in Reward Functions
Adam Gleave, Michael Dennis, Shane Legg, Stuart Russell, Jan Leike

Action
(Notification)

Observation
(Clicks, Replies, …)

Example: Push Notifications

Gauci et al (2018). Horizon: Facebook's Open Source Applied Reinforcement Learning Platform. (Section 9.1)

User
Demonstrations

Preference
Comparisons

Reward
Labels

Reward Function Specification

Hand
Designed

Comparing Reward Functions

v.s.

Prior Work: Rollout Evaluation

RL

Rollout

≡

≉

≉

≡≉

≡≉

Prior Work: Rollout Evaluation

RL

Rollout

≉

We learn rewards,
not policies.

So let’s evaluate
rewards, not policies.

Optimal policy preserving transformations:

● Positive affine: λR + c ≡ R for λ > 0 and c ∈ ℝ.
● Potential shaping: moving reward in time.

Equivalent Rewards Should Be Treated as Equal

Requirement: if two reward functions incentivize the same

behaviour, then the comparison should treat them as equal.

Equivalent-Policy Invariant Comparison (EPIC)

Canonicalize
(shaping invariant)

Pearson distance
(affine invariant)

Coverage
Distribution

Canonicalization

The canonical reward RC

 is a shaped and shifted version of R

such that the mean reward leaving any state s is zero:

where action A and next state S’ are random variables.

RC can be expressed in terms of expectations on R.

Pearson distance

Pearson correlation coefficient: affine-invariant similarity.

Coverage distribution: over transitions.

Pearson distance:

Equivalent-Policy Invariant Comparison (EPIC)

Canonicalize
(shaping invariant)

Pearson distance
(affine invariant)

Coverage
Distribution

EPIC is a distance

Standard properties:

● Symmetry.
● Triangle inequality.

Other properties:

● Bounded on [0,1].

● Zero distance between equivalent rewards.

EPIC is fast

Runtime for reward comparisons in a simple control task:

EPIC is fast

Method Seeds Runtime

Rollout 3 4h:5m:45s

EPIC (8192 samples) 3 0h:0m:17s

EPIC (65,536 samples) 30 1h:52m:18s

EPIC is easy to use

EPIC hyperparameters:

● Coverage distribution.
● Number of samples.

Rollout hyperparameters:

● RL algorithm.
● Number of timesteps.
● Batch size.
● Learning rate.
● Entropy coefficient.
● … and many more!

EPIC is easy to use: choosing number of samples

More samples: higher accuracy, slower speed.

Rule of thumb: increase samples until CI is small enough.

EPIC is easy to use: coverage distribution

Coverage distribution: over transitions.

Narrow coverage: overestimates similarity.

Broad coverage: underestimates similarity.

EPIC is easy to use: coverage distribution

The difference in return G of optimal policies and for
rewards R

A
 and R

B
 is bounded by the EPIC distance:

where is a constant that depends on the support of the
EPIC coverage distribution.

EPIC predicts policy return

EPIC predicts policy return

Agent

Goal

Agent

Goal

Train

Test

Adam Gleave Michael Dennis Shane Legg Stuart RussellJan Leike

Blog: gleave.me/epicblog
Paper: gleave.me/epicpaper
GitHub: gleave.me/epicsrc

Thanks!

https://gleave.me/epicblog
https://gleave.me/epicpaper
https://gleave.me/epicsrc

