DeepMind

Representation Learning via Invariant Causal Mechanisms (ReLIC)

Authors: Jovana Mitrovic, Brian McWilliams, Jacob Walker, Lars Buesing, Charles Blundell

Motivation

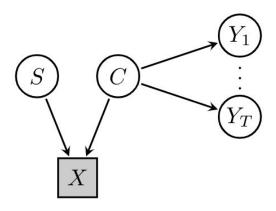
Problem: How to learn useful representations when we don't have access to labels?

Approach: Understand what should be learned and then derive how to learn it

This work: Use causality to formalize self-supervised learning

- Provide alternative explanation for contrastive learning (current SoTA)
- New objective based on invariant prediction
- Strong theoretical and empirical generalization results

Causal Formalization



A representation needs to

1. Capture directly relevant information: content

2. Discard spuriously correlated aspects: style

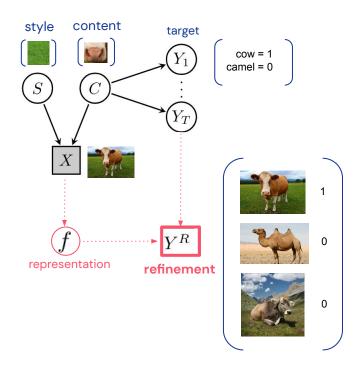
Content is an **invariant predictor** of target under style interventions:

$$p^{do(S=s_i)}(Y_t \mid C) = p^{do(S=s_j)}(Y_t \mid C) \quad \forall \ s_i, s_j \in \mathcal{S}$$

Use data augmentations as simulated interventions on the unobserved style

Defining proxy tasks

Targets are unobserved. How do we define sensible proxy tasks to solve?



Refinements are more fine-grained instances of the original problem.

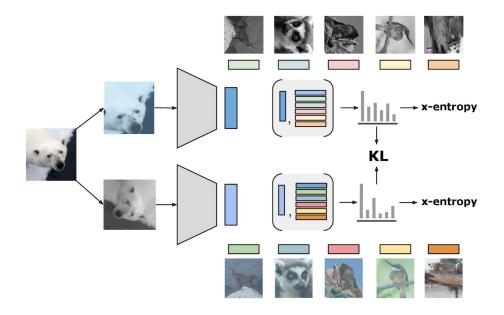
Theorem:

If the proxy task used for learning is a **refinement**, the resulting representation will be useful for downstream tasks

Contrastive learning does **instance discrimination**: the most fine-grained refinement!

Causality explains why contrastive learning produces useful representations!

ReLIC objective



Learning principle:

(Invariant prediction) $p^{\operatorname{do}(a_i)}(Y^R|f(X)) = p^{\operatorname{do}(a_j)}(Y^R|f(X)) \quad \forall a_i, a_j \in \mathcal{A}.$

Linear Evaluation on ImageNet

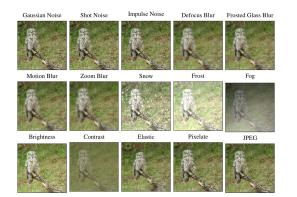
Table 1: Accuracy (in %) under linear evaluation on ImageNet for different self-supervised representation learning methods. Methods with * use SimCLR augmentations. Methods with † use custom, stronger augmentations.

Method		Top-1	Top-5
ResNet-50 architecture			
PIRL		63.6	-
CPC v2		63.8	85.3
CMC		66.2	87.0
SimCLR [4]	*	69.3	89.0
SwAV [2]	*	70.1	-
RELIC (ours)	*	70.3	89.5
InfoMin Aug. [22]	†	73.0	91.1
SwAV [2]	†	75.3	-
ResNet-50 with target network			
MoCo v2 [5]		71.1	
BYOL [7]	*	74.3	91.6
RELIC (ours)	*	74.8	92.2

* uses standard augmentations

† uses stronger augmentations

Robustness and Out-of-Distribution Generalization



Images with diverse corruptions of varying strengths

Tests: robustness of representation

Method	Supervised	SimCLR	RELIC	BYOL	$RELIC_T$
mCE (%)	76.7	87.5	76.4	72.3	70.8

ImageNet-R (rendered)

New renditions of 200 ImageNet classes **Tests:** out-of-distribution generalization

Method	Supervised	SimCLR	RELIC	BYOL	$ReLIC_T$
Top-1 Error (%)	63.9	81.7	77.4	77.0	76.2

Performance on RL benchmark - Atari

Table 4: Human Normalized Scores of Auxiliary Methods over 57 Atari Games.

Atari Performance	RELIC	SimCLR	CURL	BYOL	Augmentation
Capped mean	91.46	88.76	90.72	89.43	80.60
Number of superhuman games	51	49	49	49	34
Mean	3003.73	2086.16	2413.12	1769.43	503.15
Median	832.50	592.83	819.56	483.39	132.17
40% Percentile	356.27	266.07	409.46	224.80	94.35
30% Percentile	202.49	174.19	190.96	150.21	80.04
20% Percentile	133.93	120.84	126.10	118.36	57.95
10% Percentile	83.79	37.19	59.09	44.14	32.74
5% Percentile	20.87	12.74	20.56	7.75	2.85

DeepMind

Thank you!

Contact: mitrovic@google.com

