

CPR: Classifier-Projection Regularization for Continual Learning

Sungmin Cha¹, Hsiang Hsu ², Taebaek Hwang ¹, Flavio P. Calmon ² and Taesup Moon ³ ¹Sungkyunkwan University, ²Harvard University, ³Seoul National University csm9493@skku.edu, hsianghsu@g.harvard.edu, qxq9160@gmail.com, flavio@seas.Harvard.edu, tsmoon@snu.ac.kr

Introduction

Algorithms for continual learning

- Dynamic network architecture-based (ex. PNN, DEN)
- Dual memory system-based (Ex. GEM, iCaRL)
- Regularization-based (Reg-based) (Ex. EWC, MAS, AGS-CL)

Stability-Plasticity dilemma of CL method

- **Stability**: overcoming catastrophic forgetting of previous tasks
- **Plasticity**: learning news task well

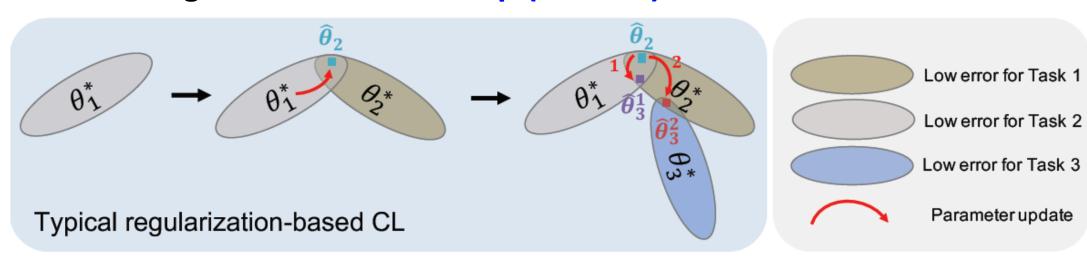
Methods for converging to wide local minima

- Small mini-batch size, using a new optimizer (Ex. EntropySGD)
- Regularizing the softmax output (Ex. Entropy Maximization)

Motivation

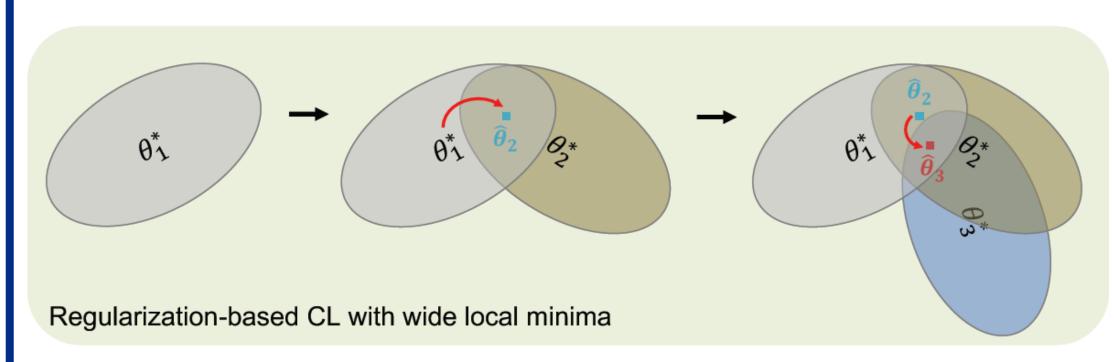
A geometric intuition of CPR

Reg-based CL with sharp (narrow) local minima



ellipsoid: the uncertainty ellipsoid of parameter around the local minima

- It can hurt both stability and plasticity of CL
- Reg-based CL with wide (flat) local minima



- Promoting wide local minima during CL can be particularly beneficial for regularization-based CL
 - Increase both the stability and plasticity at the same time!

Method

Regularization-based continual learning

$$L_{\mathsf{CL}}^{t}(\boldsymbol{\theta}) = L_{\mathsf{CE}}^{t}(\boldsymbol{\theta}) + \lambda \sum_{i} \Omega_{i}^{t-1} (\theta_{i} - \theta_{i}^{t-1})^{2}$$

- λ : the regularization strength (hyperparameter)
- $\{\theta_i^{t-1}\}$: the parameter learned until task t-1
- $L^t_{\mathsf{CE}}(oldsymbol{ heta})$: the cross-entropy loss function for task t
- $\Omega^{t-1} = \{\Omega_i^{t-1}\}$: the set of estimates of the weight importance

Single-task wide local minima

$$L_{\mathsf{WLM}}(\boldsymbol{\theta}) = L_{\mathsf{CE}}(\boldsymbol{\theta}) + \frac{\beta}{N} \sum_{n=1}^{N} D_{\mathsf{KL}}(f_{\boldsymbol{\theta}}(\mathbf{x}_n) \| g)$$

- β : the trade-off parameter (hyperparameter)
- g : some probability distribution in Δ_M

CPR: Achieving wide local minima during CL

$$\begin{split} L_{\mathsf{CPR}}^t(\boldsymbol{\theta}) &= L_{\mathsf{CE}}^t(\boldsymbol{\theta}) + \frac{\beta}{N} \sum_{n=1}^N D_{\mathsf{KL}}(f_{\boldsymbol{\theta}}(\mathbf{x}_n^t) \| P_U) \\ &+ \lambda \sum_i \Omega_i^{t-1} (\theta_i^t - \theta_i^{t-1})^2, \end{split}$$

- λ and β : the regularization parameters (hyperparameter)
- P_U : the uniform distribution

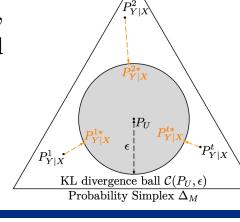
CPR can be applied to any state-of-the-art reg-based CL!

Interpretation by information projection

- Information projection: $P^* = \arg \min D_{\mathsf{KL}}(Q||P)$
- Classifier projection: $P_{Y|X}^* = \underset{Q_{Y|Y} \in \mathcal{C}}{\operatorname{arg \, min}} \ \mathbb{E}_{P_X} \left[D_{\mathsf{KL}}(Q_{Y|X}(\cdot|X) || P_{Y|X}(\cdot|X)) \right]$
- CPR: Classifier projection onto a finite radius ball around

For any classifier $P_{Y|X}^{t-1*} \in \mathcal{C}(P_U, \epsilon)$ for task t-1 with data distribution P_X^{t-1} , and let any classifier for task t be $P_{Y|X}^t \notin \mathcal{C}(P_U, \epsilon)$ and $P_{Y|X}^{t*}$ be the projected

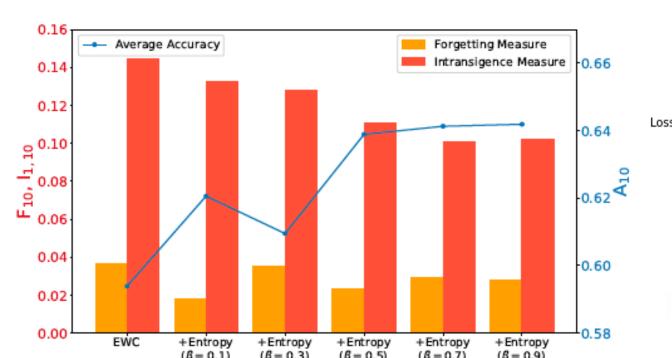
$$\mathbb{E}_{P_{Y|X}^{t-1*}P_X^{t-1}} \left[-\log P_{Y|X}^t P_X^{t-1} \right] \ge \mathbb{E}_{P_{Y|X}^{t-1*}P_X^{t-1}} \left[-\log P_{Y|X}^{t*} P_X^{t-1} \right].$$

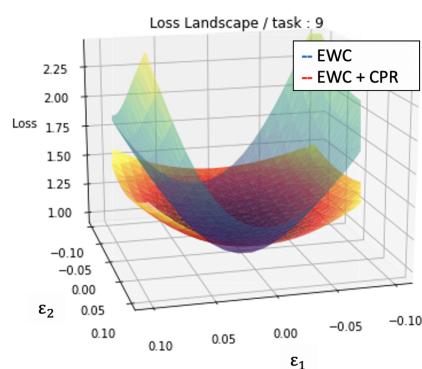


Experimental Results

Quantifying the role of CPR during CL

Selecting β for CPR / plotting the loss landscape





- F_{10} : the measure for stability
 - $I_{1,10}$: the measure for plasticity

Make a model converge to wide local minima

Applying CPR to state-of-the-art reg-based CL methods

Experimental results on supervised learning with various datasets

Dataset	Method	Average Accuracy (A_10)			Forgetting Measure (F_10)			Intransigence Measure $(I_{1,10})$		
		W/o	W/	diff	W/o	W/	diff	W/o	W/	diff
		CPR	CPR	(W-W/o)	CPR	CPR	(W/-W/o)	CPR	CPR	(W-W/o)
CIFAR100 (T = 10)	EWC	0.6002	0.6328	+0.0326 (+5.2%)	0.0312	0.0285	-0.0027 (-8.7%)	0.1419	0.1117	-0.0302 (-21.3%)
	SI	0.6141	0.6476	+0.0336 (+5.5%)	0.1106	0.0999	-0.0107 (-9.7%)	0.0566	0.0327	-0.0239 (-42.2%)
	MAS	0.6172	0.6442	+0.0270 (+4.4%)	0.0416	0.0460	-0.0011 (-2.6%)	0.1155	0.0778	-0.0257 (-22.2%)
	Rwalk	0.5784	0.6366	+0.0581 (+10.0%)	0.0937	0.0769	-0.0169 (-18.0%)	0.1074	0.0644	-0.0430 (-40.0%)
	AGS-CL	0.6369	0.6615	+0.0246 (+3.9%)	0.0259	0.0247	-0.0012 (-4.63%)	0.1100	0.0865	-0.0235 (-24.4%)
CIFAR10/100 (T = 11)	EWC	0.6950	0.7055	+0.0105 (+1.5%)	0.0228	0.0181	-0.0048 (-21.1%)	0.1121	0.1058	-0.0062 (-5.5%)
	SI	0.7127	0.7186	+0.0059 (+0.8%)	0.0459	0.0408	-0.0051 (-11.1%)	0.0733	0.0721	-0.0012 (-1.6%)
	MAS	0.7239	0.7257	+0.0017 (+0.2%)	0.0479	0.0476	-0.0003 (-0.6%)	0.0603	0.0588	-0.0015 (-2.5%)
	Rwalk	0.6934	0.7046	+0.0112 (+1.6%)	0.0738	0.0707	-0.0031 (-4.2%)	0.0672	0.0589	-0.0084 (-12.5%)
	AGS-CL	0.7580	0.7613	+0.0032 (+0.4%)	0.0009	0.0009	0	0.0731	0.0697	-0.0034 (-4.7%)
Omniglot $(T = 50)$	EWC	0.6632	0.8387	+0.1755 (+26.5%)	0.2096	0.0321	-0.1776 (-84.7%)	-0.0227	-0.0239	-0.0012 (-5.3%)
	SI	0.8478	0.8621	+0.0143 (+1.7%)	0.0247	0.0167	-0.0079 (-32.0%)	-0.0258	-0.0282	-0.0065 (-25.3%)
	MAS	0.8401	0.8679	+0.0278 (+3.3%)	0.0316	0.0101	-0.0215 (-68.0%)	-0.0247	-0.0314	-0.0067 (-27.1%)
	Rwalk	0.8056	0.8497	+0.0440 (+5.5%)	0.0644	0.0264	-0.0380 (-59.0%)	-0.0226	-0.0294	-0.0068 (-30.1%)
	AGS-CL	0.8553	0.8805	+0.0253 (+3.0%)	0	0	0	0.0323	0.0046	-0.0277 (-85.8%)
CUB200 (T = 10)	EWC	0.5746	0.6098	+0.0348 (+6.1%)	0.0811	0.0807	-0.0004 (-0.5%)	0.1011	0.0667	-0.0345 (-34.1%)
	SI	0.6047	0.6232	+0.0157 (+2.6%)	0.0549	0.0474	-0.0075 (-13.7%)	0.0918	0.0827	-0.0091 (-9.9%)
	MAS	0.5842	0.6123	+0.0281 (+4.8%)	0.1188	0.1030	-0.0158 (-13.3%)	0.0575	0.0436	-0.0139 (-24.2%)
	Rwalk	0.6078	0.6324	+0.0247 (+4.1%)	0.0811	0.0601	-0.0210 (-25.9%)	0.0679	0.0621	-0.0058 (-8.5%)
	AGS-CL	0.5403	0.5623	+0.0220 (+4.07%)	0.0750	0.0692	-0.0058 (-7.7%)	0.1408	0.1241	-0.0167 (-11.7%)

CPR improves accuracy, plasticity and stability of reg-based CL methods for all datasets

