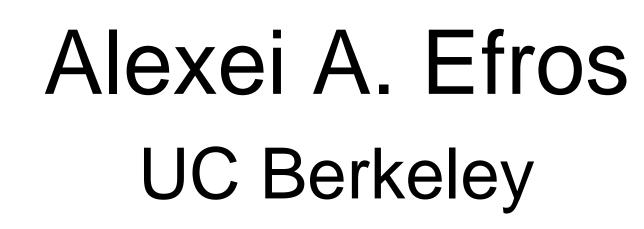
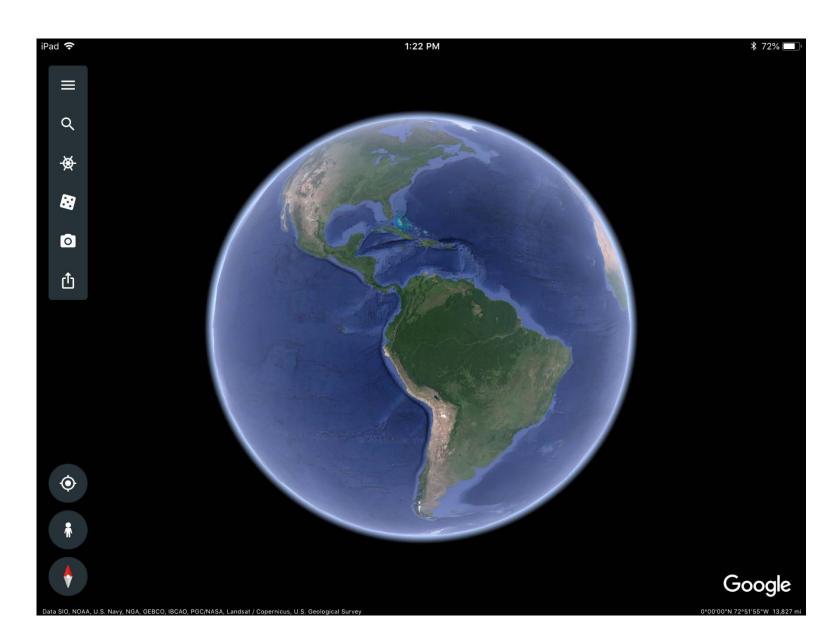
Self-Supervision for Learning from the Bottom Up

© Quint Buchholz



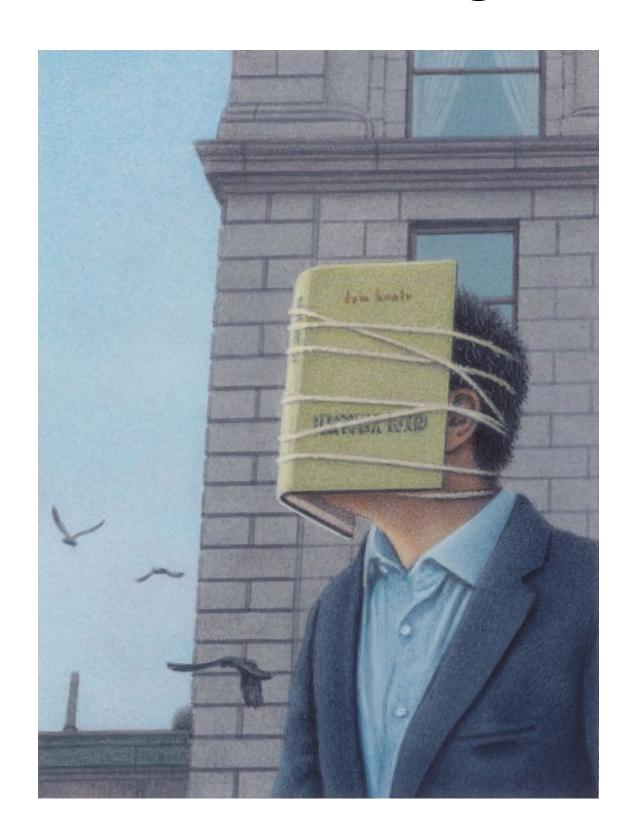
BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH

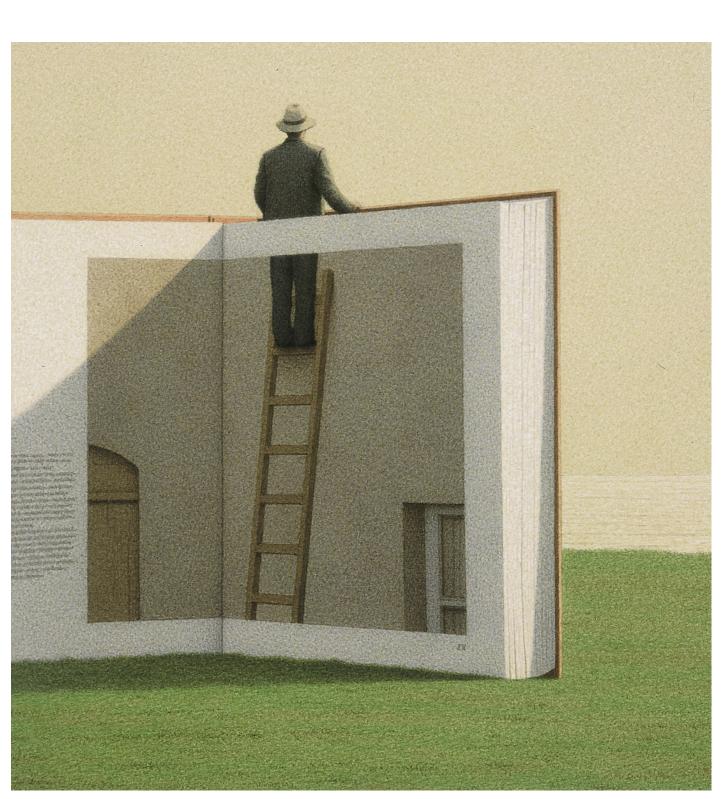
- A common answer:
 - "Because labels are expensive"



Earth Population: 7.8 billion

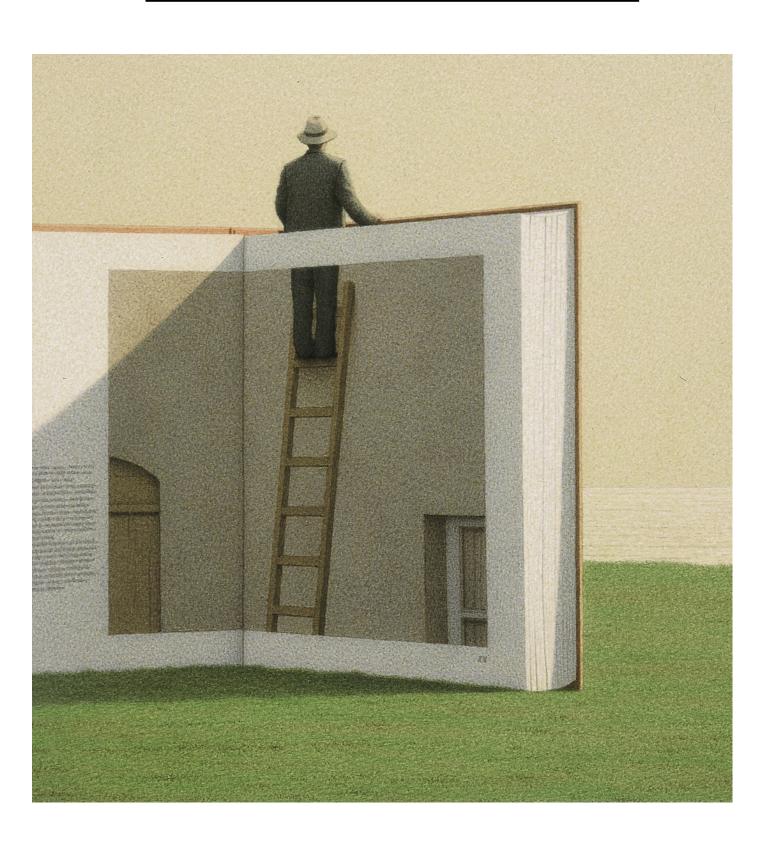
- 1. To get away from semantic categories
- 2. To get away from fixed datasets
- 3. To get away from fixed objectives





- 1. To get away from semantic categories

2. To get away from fixed datasets

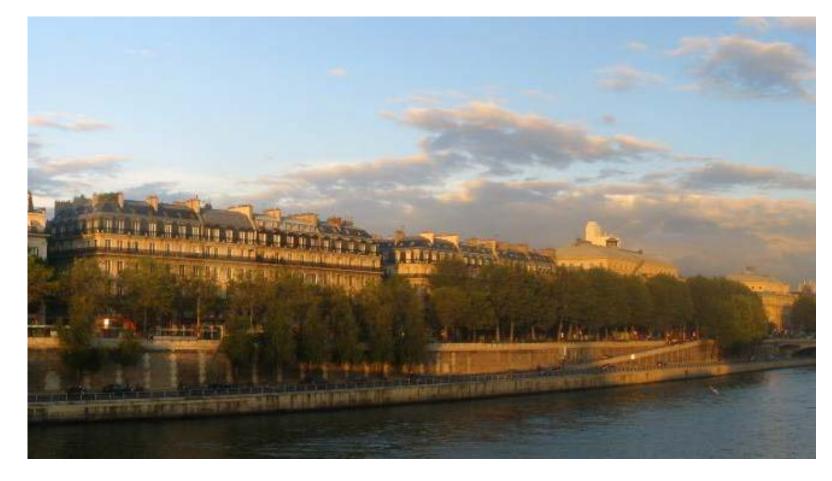


3. To get away from fixed objectives

Problem with semantic categories

Chair

City



With labels like these, we are setting our systems up to fail

Classical View of Categories

- Dates back to Plato & Aristotle
 - 1. Categories defined by a **list of properties** shared by all elements in a category
 - 2. Category membership is binary
 - 3. Every member in the category is equal

Problems with Classical View

- Humans don't do this!
 - People don't rely on abstract definitions / lists of shared properties (Wittgenstein 1953, Rosch 1973)
 - e.g. define the properties shared by all "games"
 - Typicality
 - e.g. Chicken -> bird, but bird -> eagle, sparrow, etc.
 - Language-dependent
 - e.g. In Russian, there is no single word for "chair": стул, кресло, табуретка

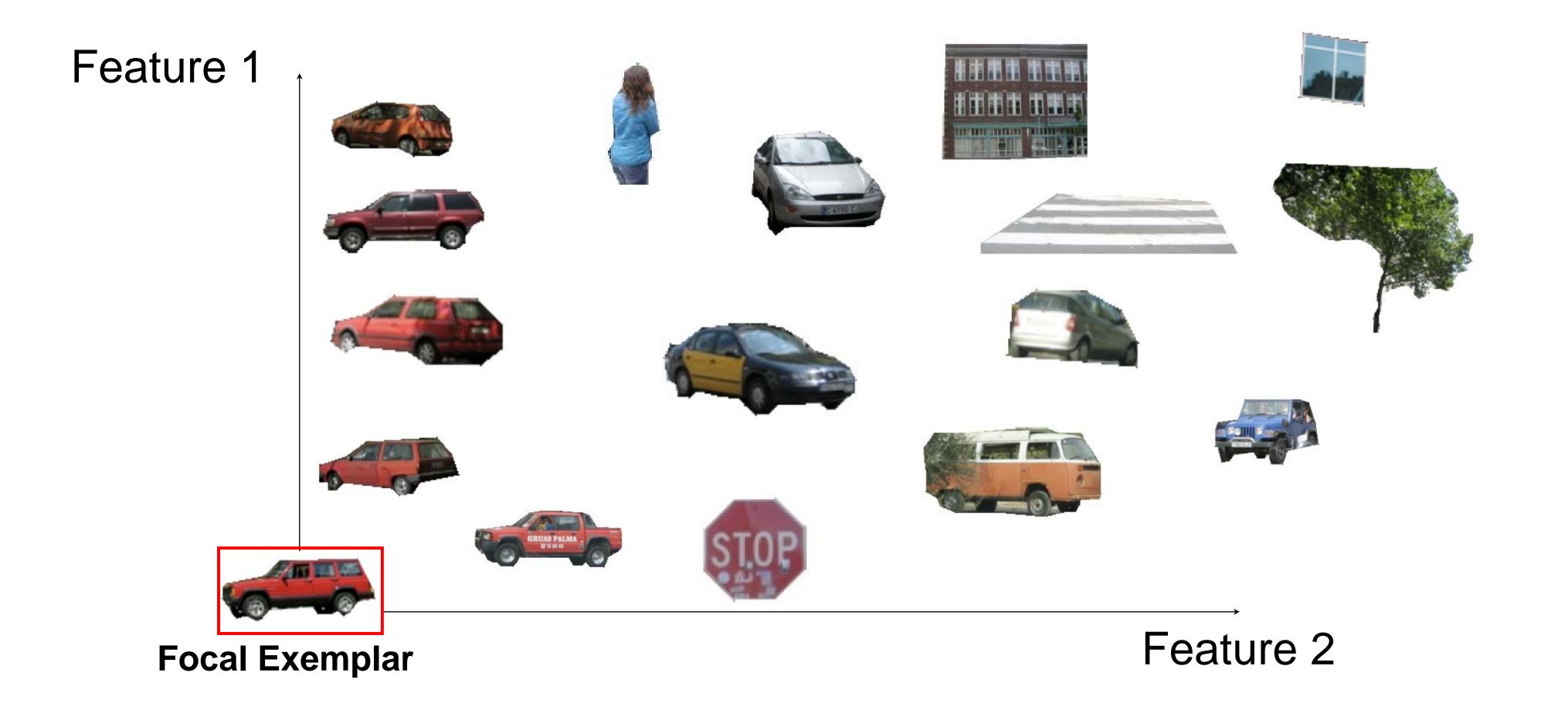
Bottom-up Association instead of Top-down Categorization

- Porotype theory (Rosch, 1973)
- Exemplar Theory (Medin & Schaffer 1978, Nosofsky 1986, Krushke 1992)

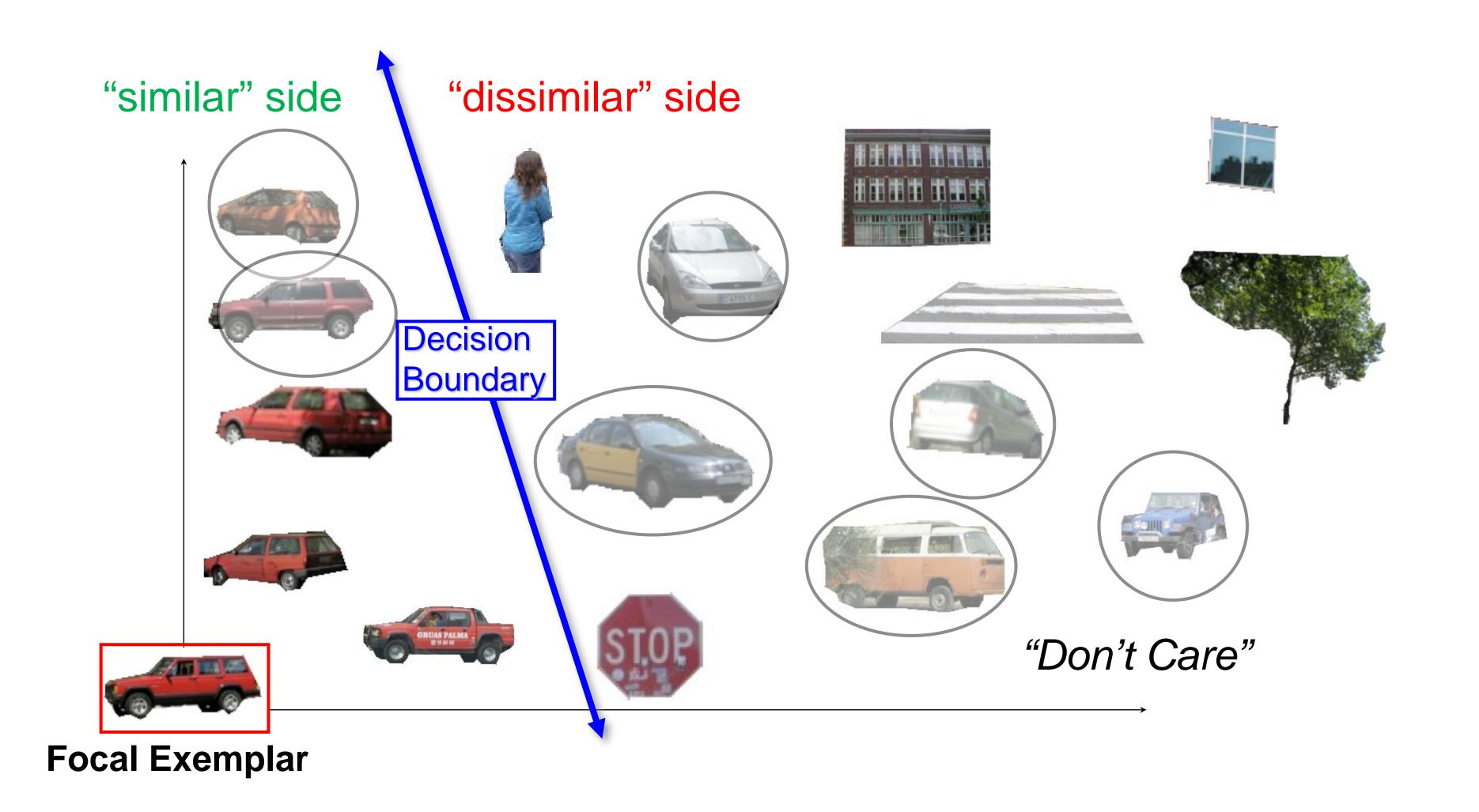
Ask not "What is it?" Ask "What is it like?"

-- Moshe Bar, 2008

Learning Per-Exemplar Distances (CVPR 2008)



Learning Per-Exemplar Distances (CVPR 2008)

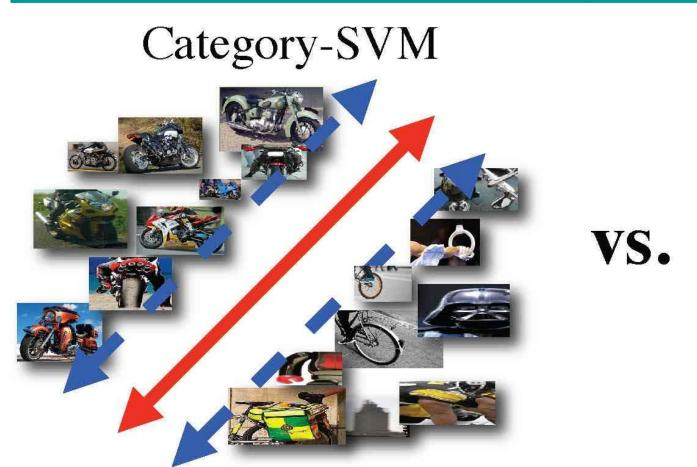


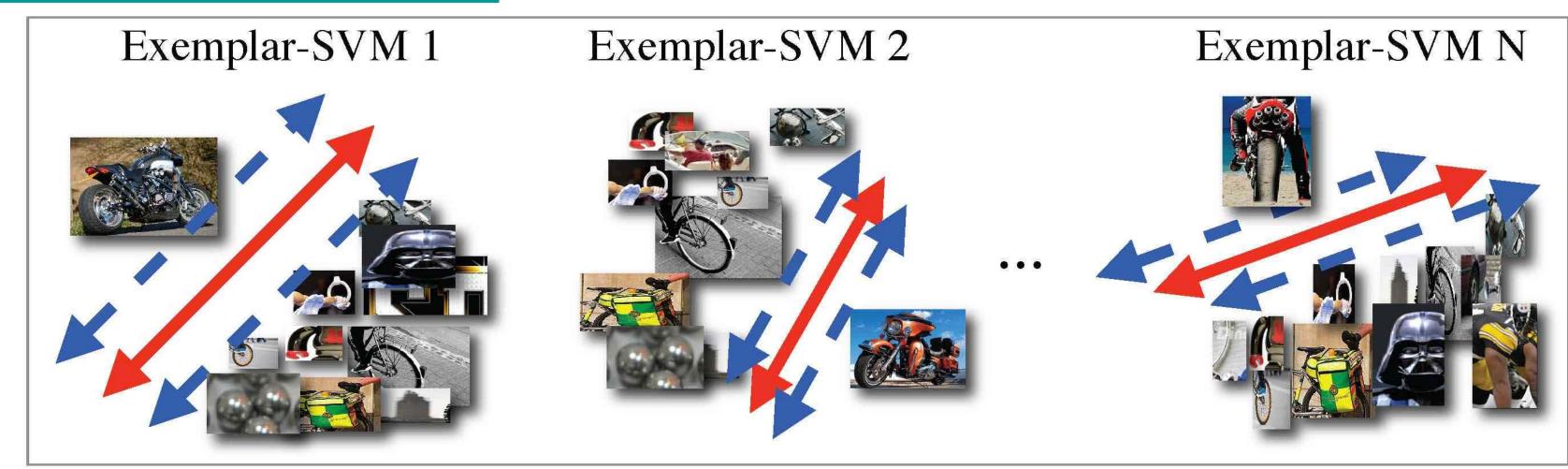
Learning Per-Exemplar Distances (CVPR 2008)

Query Baseline Top Nearest Neighbors

Exemplar-SVM: defining yourself by what you are not

[Malisiewicz, Gupta, Efros, ICCV'11]



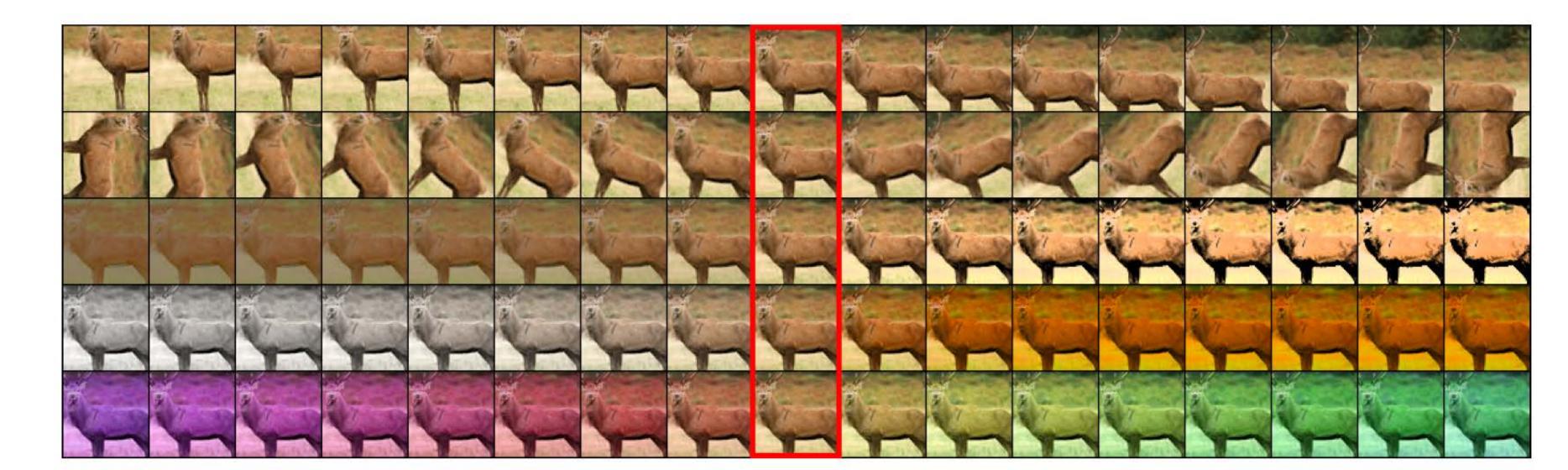


One-against-all learning for image retrieval [Srivastava et al, SIGGRAPH'11]

Exemplar-CNN [Dosovitskiy et al, NIPS'14]

- single parametric representation (CNN)
- Data augmentation

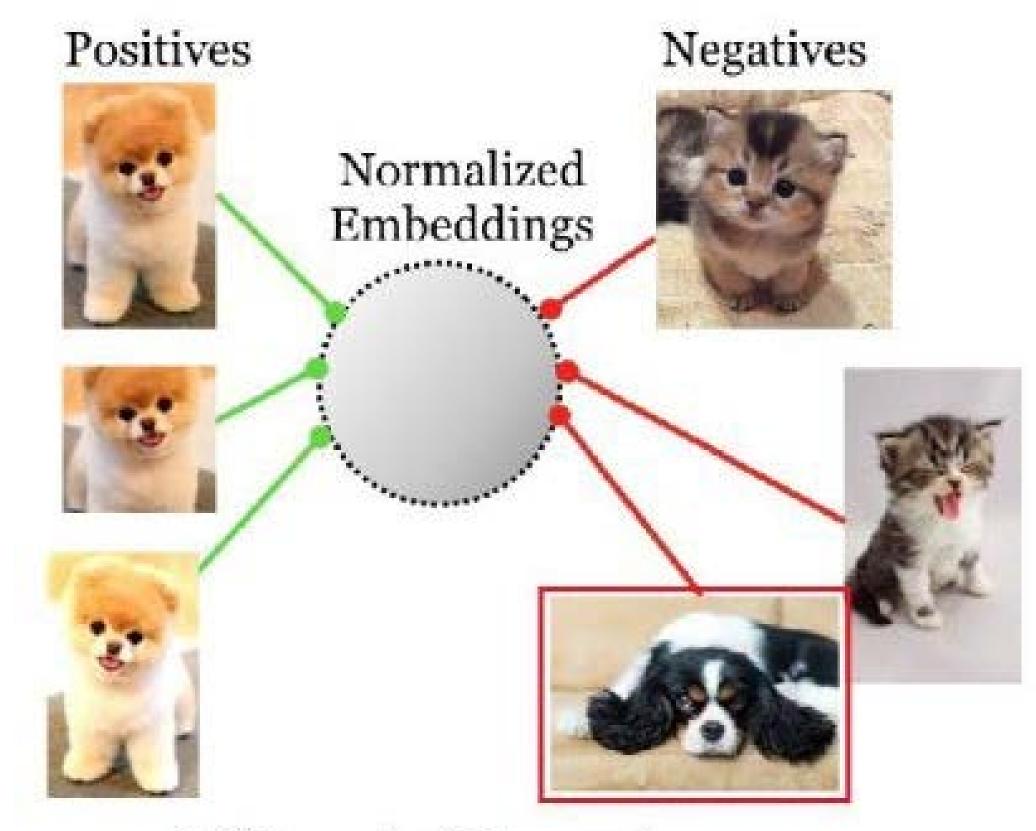
Fig. 2. Several random transformations applied to one of the patches extracted from the STL unlabeled dataset. The original ('seed') patch is in the top left corner.



Modern Day: representations via Similarity Learning

- Metric Learning
- Siamese Nets
- Contrastive Learning
- etc

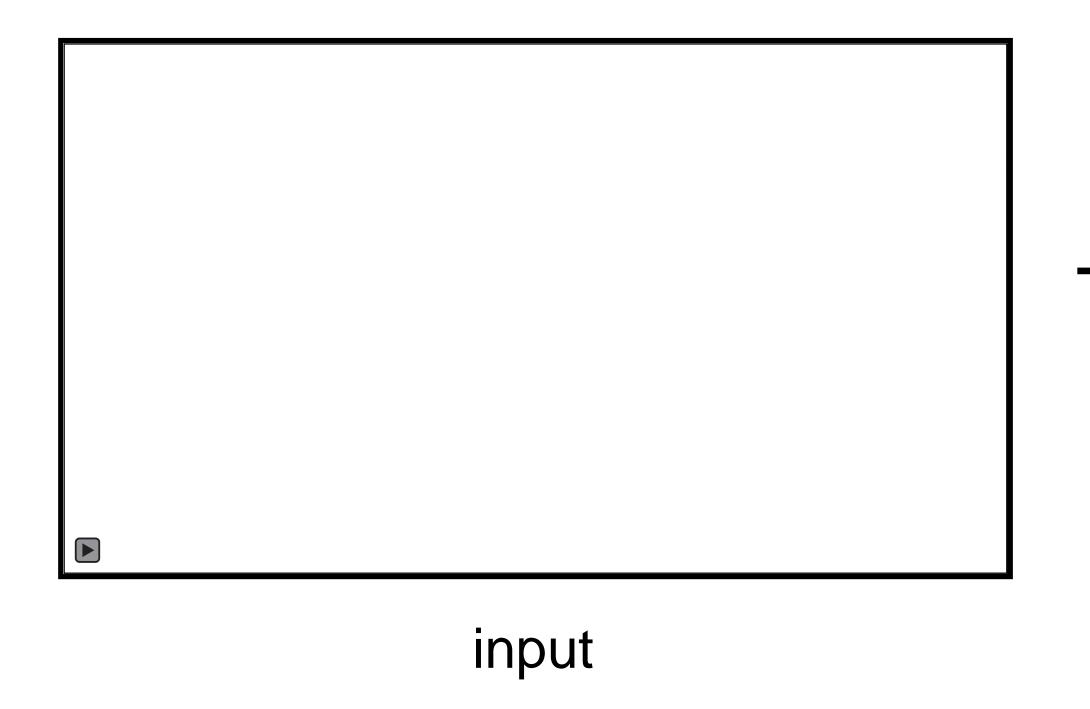
Becker et al (1992)
de Sa (1993)
Bromley et al (1994)
Chopra et al (2005)
Dosovitsky et al (2014)
Bojanowski et al (2017)
Wu et al (2018)
van den Oord et al (2019)
Tian et al (2019)
He et al (2019)
Chen et al (2020)

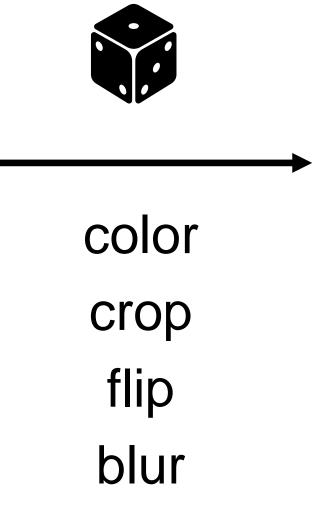


Self Supervised Contrastive

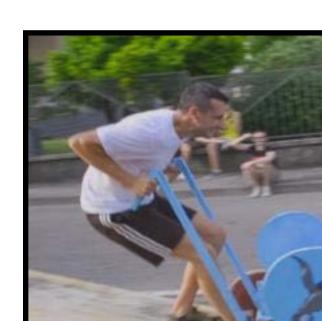
- 1. Improvements in representation learning (e.g. Contrastive)
- 2. Improved Data Augmentations (e.g. cropping)

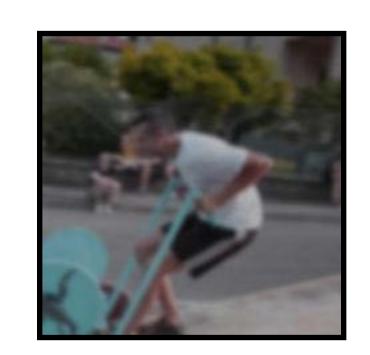
Data Augmentation





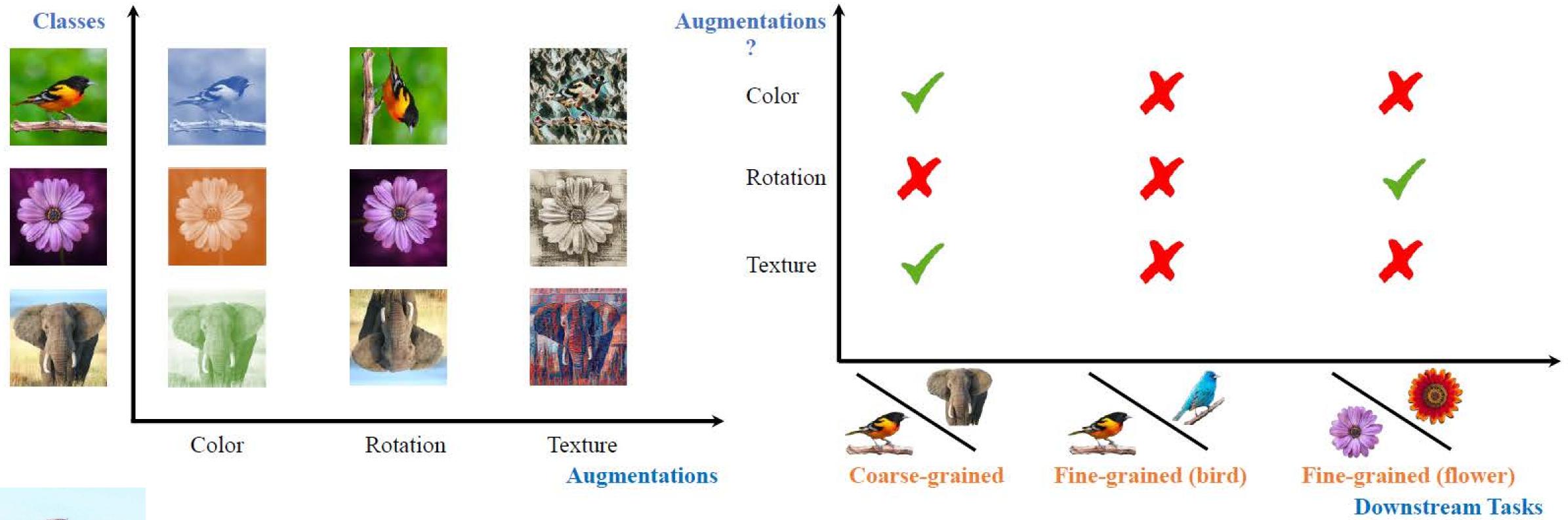
Views





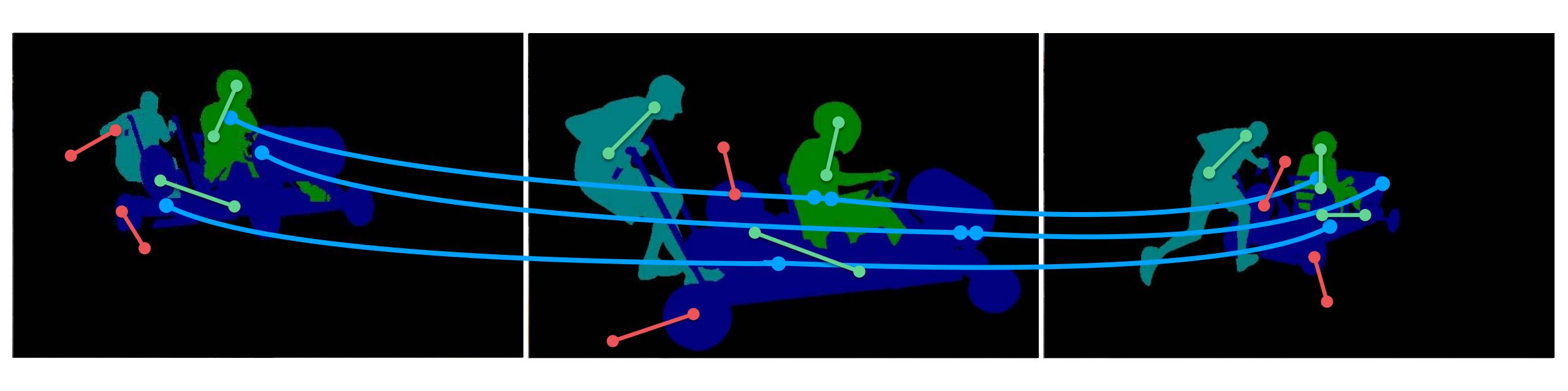
SimCLR augmentations (Chen et al, 2020)

The <u>choice</u> of data augmentation is itself supervision



What should not be contrastive in contrastive learning T Xiao, X Wang, AA Efros, T Darrell - ICLR 2021

Video as Data Augmentation



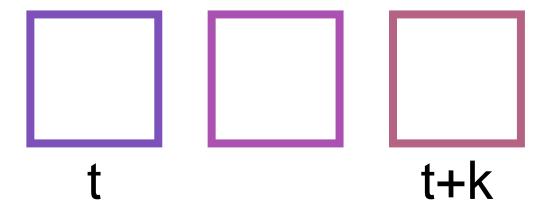
Correspondence

"Common Fate"

Wehrtheimer (1938)

Learning Representations from Video

Temporal Coherence across Frames



Slow Features, Sparse Coding, ICA

Foldiak (1989) Wiskott & Sejnowski (2001) Olshausen et al (2003) Hurri & Hyvarinen (2003)

Auto-encoders

Hinton (1989) Zou et al (2011) Goroshin et al (2013)

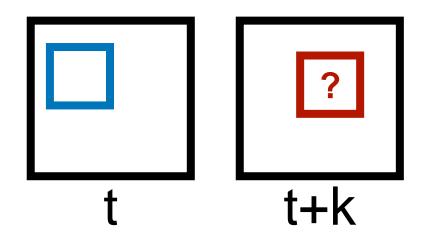
Contrastive Learning

Hyvarinen et al (2016) Sermanet et al (2018) Gordon et al (2020)

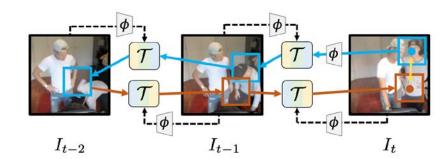
Pretext Tasks

Ranzato et al (2014) Agrawal et al (2015) Jayaraman et al (2016) Mishra et al (2017) Wei et al (2018) Vondrick et al (2019)

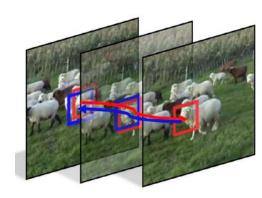
Mining Correspondence



Tracking



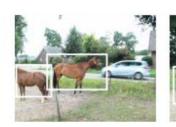
Wang & Jabri et al, 2019



Ning et al, 2019

Detection

Pirk et al, 2019

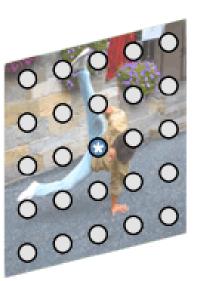


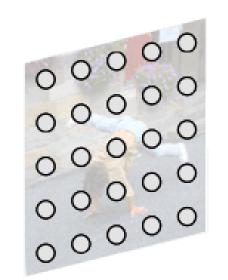
Romijnders et al, 2020

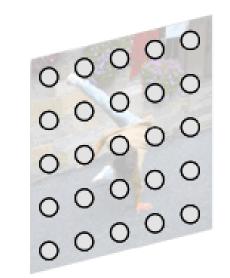
Among others, e.g.: Wang et al (2015), Lee et al (2015), Pathak et al (2016)

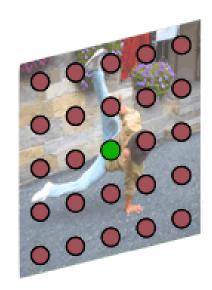
Space-Time Correspondence as a Contrastive Random Walk

NeurIPS 2020









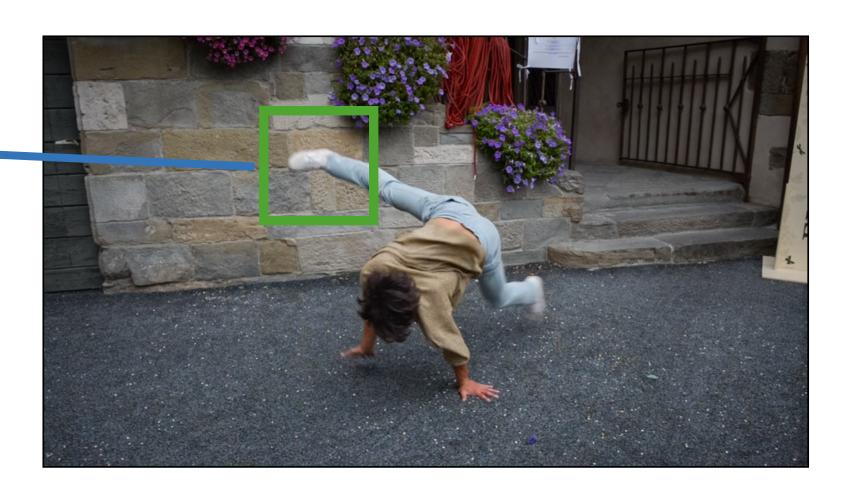


Allan A. Jabri UC Berkeley

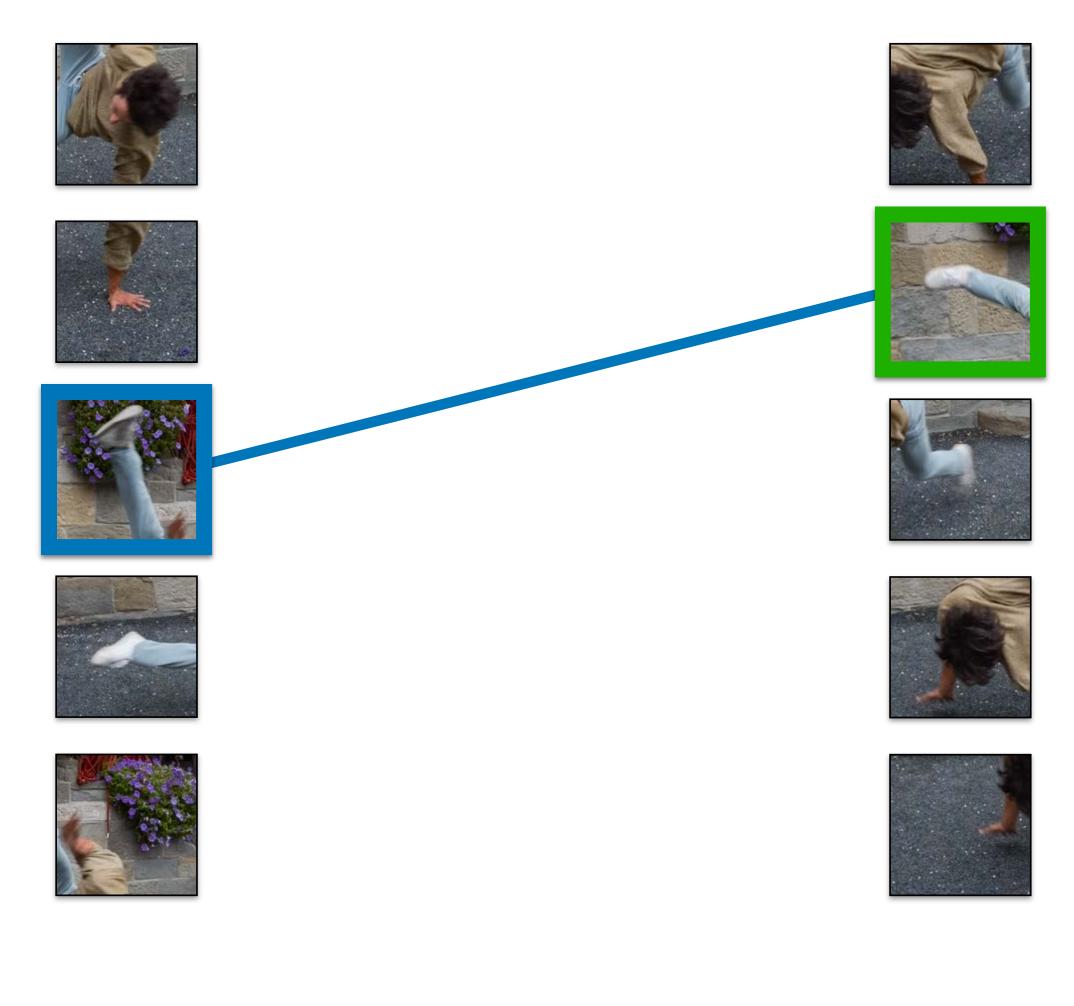
Andrew Owens
U. Michigan

Alexei A. Efros UC Berkeley

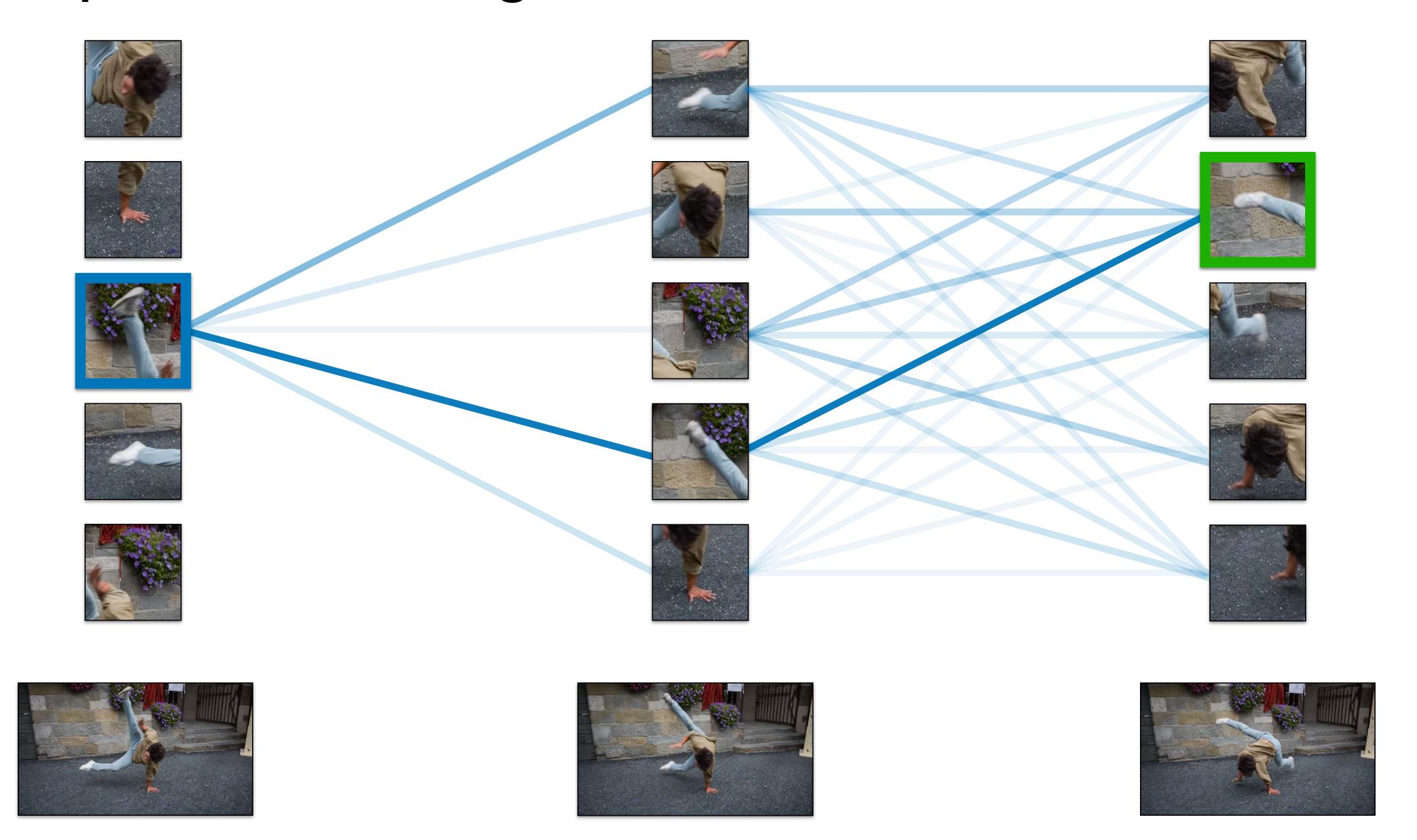
Warm up: the supervised case



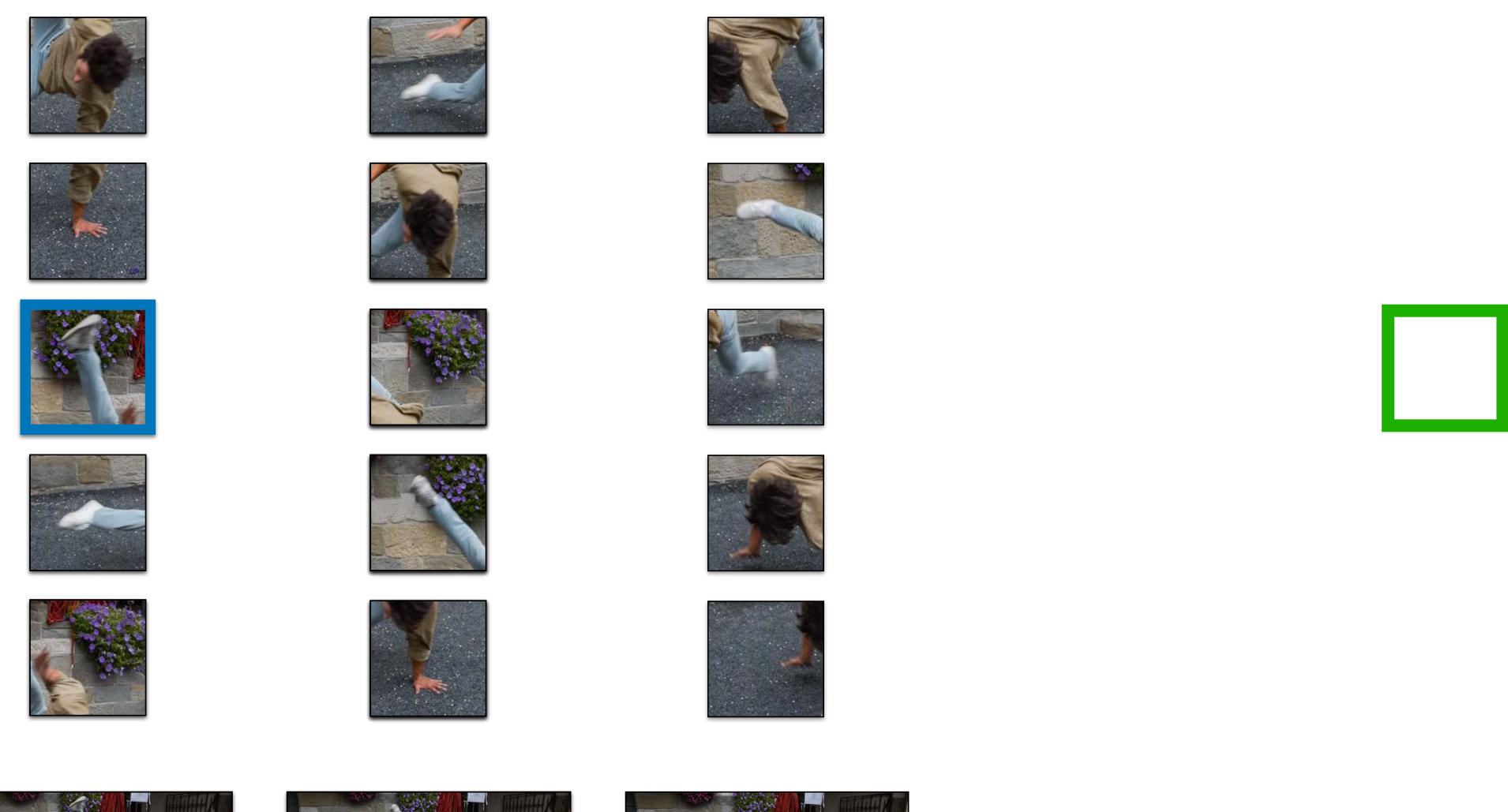
Supervised Distance Learning



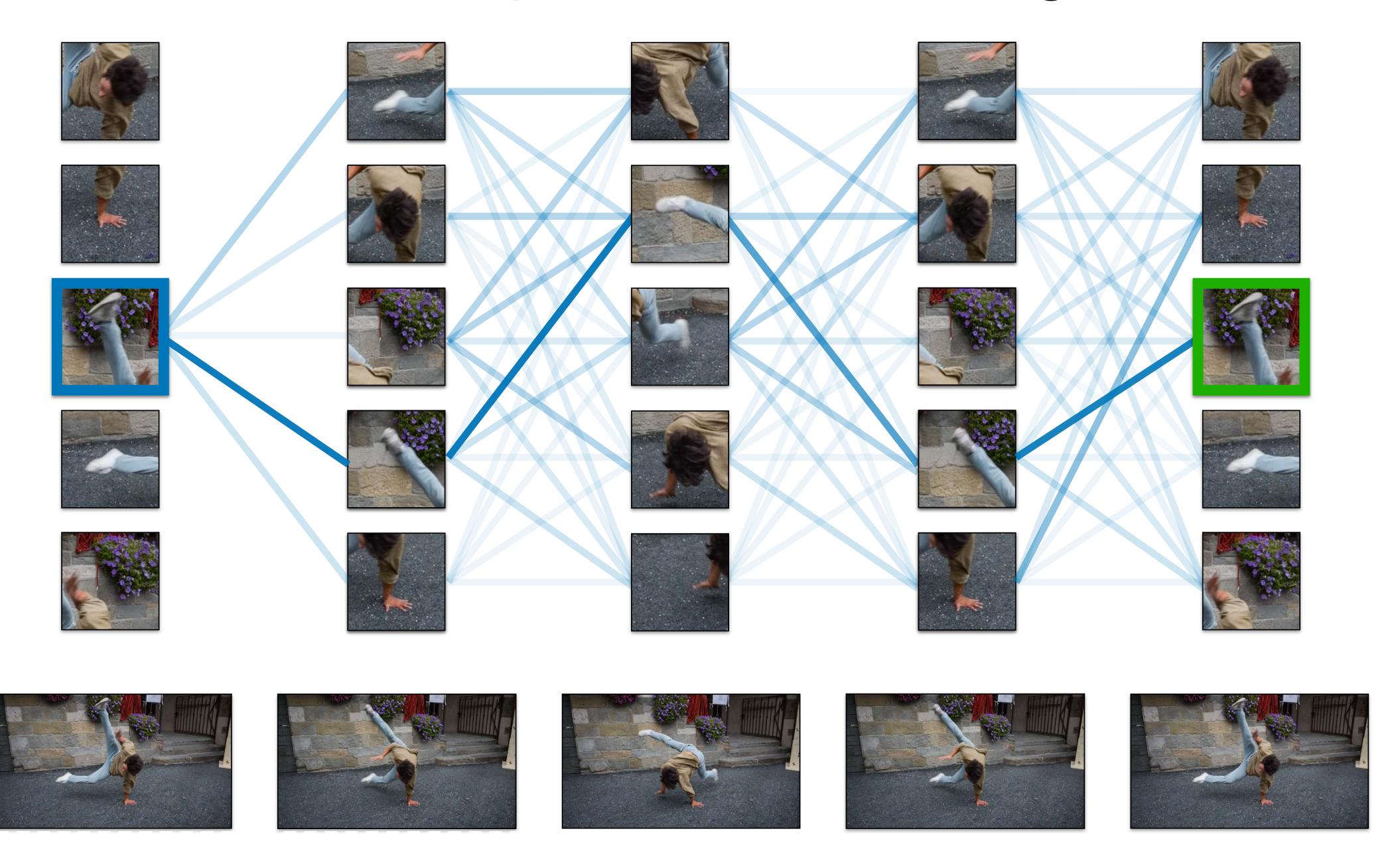
Implicit "data augmentation" with <u>latent</u> views

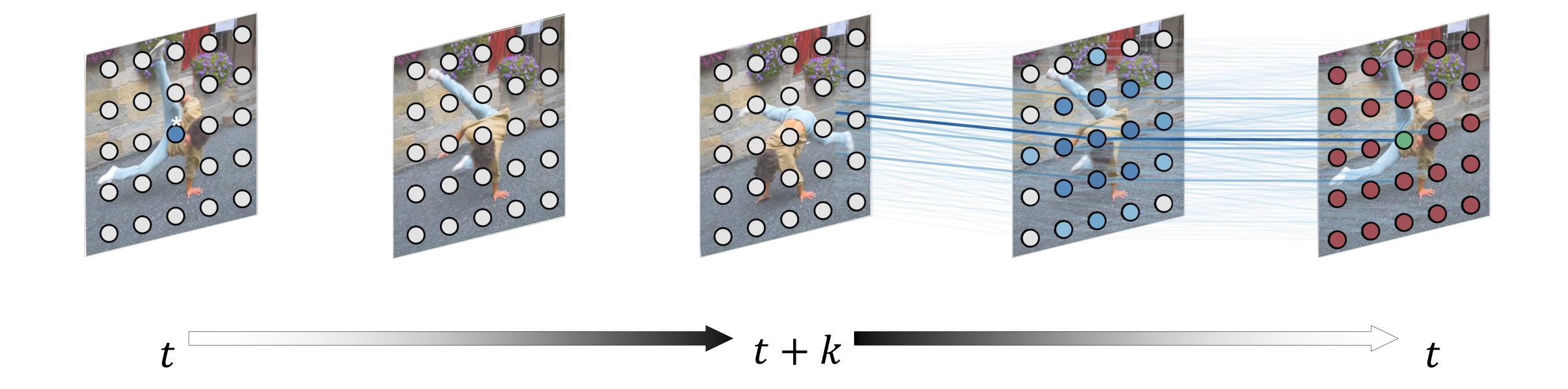


Palindromes (cycles in time)



Self-supervised Learning



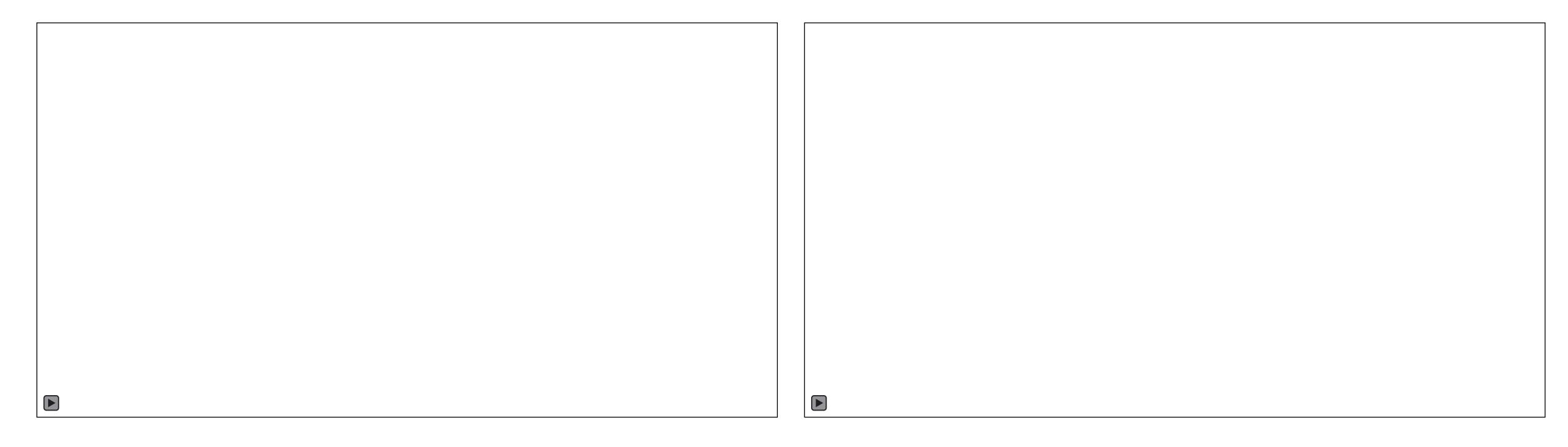


target

negatives

query

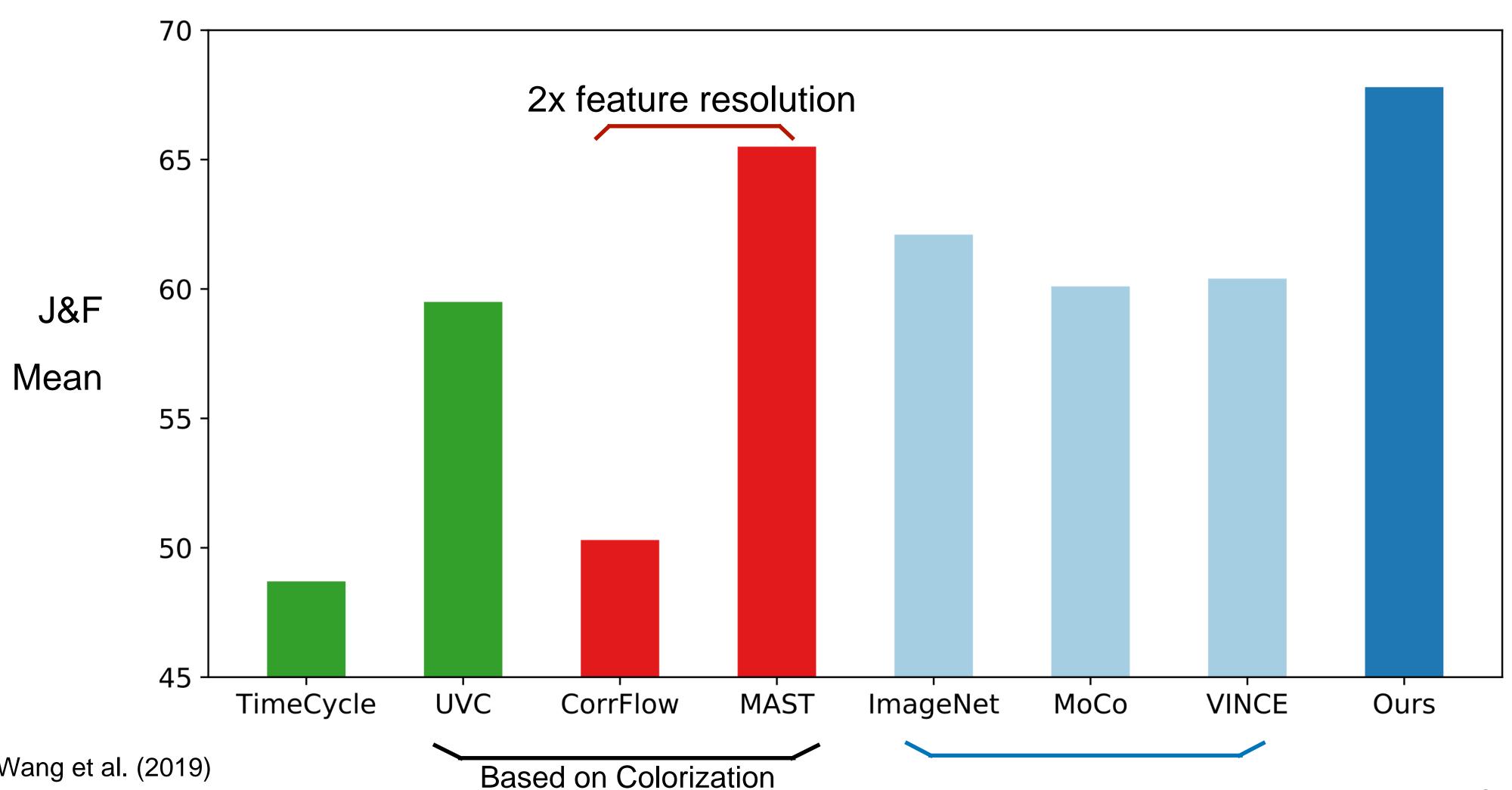
Qualitative Results: Video Object Propagation (DAVIS)



UVC Li et al. (2019)

Ours

DAVIS Video Object Segmentation



TimeCycle: Wang et al. (2019)

UVC: Li et al. (2019)

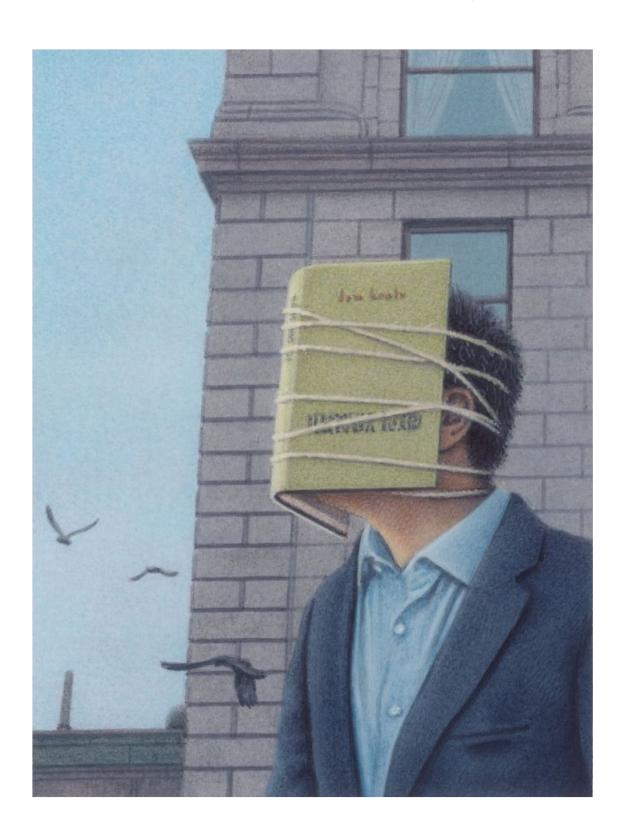
CorrFlow: Lai et al. (2019) MAST: Lai et al. (2019)

Strong Image Representations

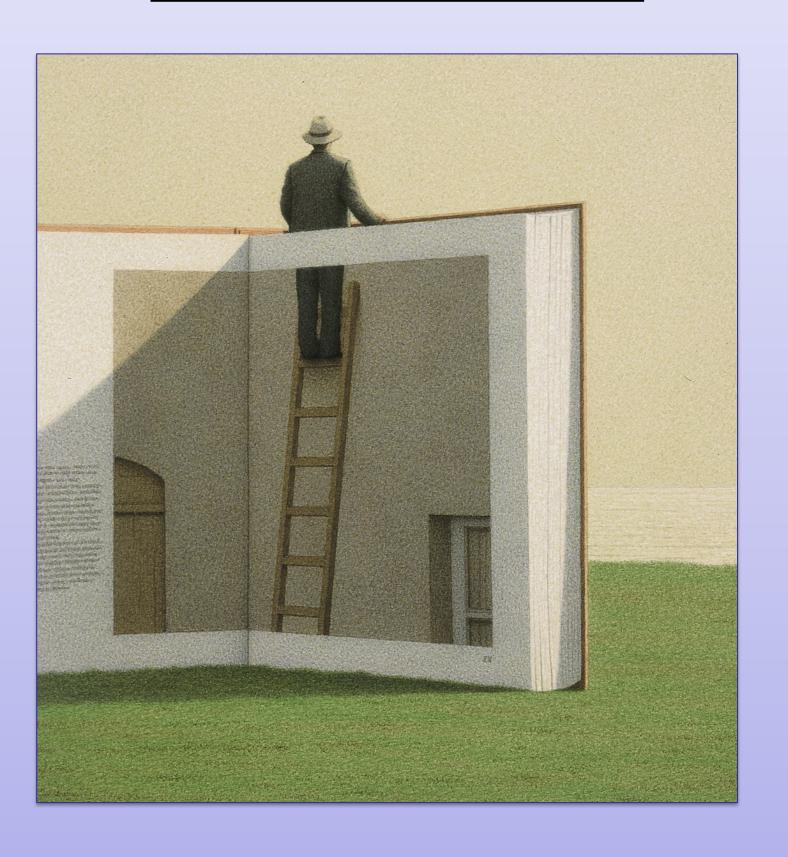
VINCE: Gordon et al. (2020)

MoCo: He et al. (2019)

1. To get away from semantic categories



2. To get away from fixed datasets



3. To get away from fixed objectives

What's wrong with Fixed Datasets?

- Real-world motivation
 - Biological agents never see the same data twice!
 - Every new piece of data is first "test", then "train"
- Repeating the same sample might encourage memorization / discourage generalization
 - Might explain why data augmentation works so well
- The only reason for fixed datasets is annotation expanse
- But with self-supervision, there is no excuse for reusing data / multiple epochs

Online Continual Learning

Training Set

Train / val split

Train Set

Val Set

Continual learning

as continual Validation/testing

Train Set

Train Set

Train Set

Test-Time Training with Self-Supervision for Generalization under Distribution Shifts

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, Moritz Hardt UC Berkeley

standard test error
$$\mathbb{E}_Q[\ell(x,y);\; heta]$$

For a test distribution Q

standard test error
$$\mathbb{E}_Q[\ell(x,y);\; heta]$$

For a test distribution Q

The test sample x gives us a hint about Q

standard test error
$$= \mathbb{E}_Q[\ell(x,y);\; heta]$$
 continual test error $= \mathbb{E}_Q[\ell(x,y);\; heta(x)]$

For a test distribution Q

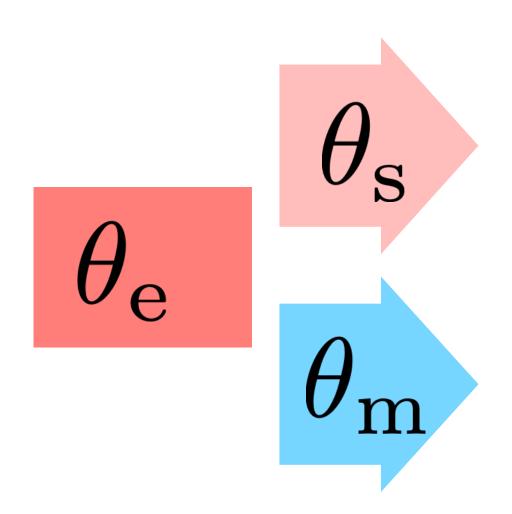
- The test sample x gives us a hint about Q
- No fixed model, but adapt at test time

standard test error
$$= \mathbb{E}_Q[\ell(x,y);\; heta]$$
 continual test error $= \mathbb{E}_Q[\ell(x,y);\; heta(x)]$

For a test distribution Q

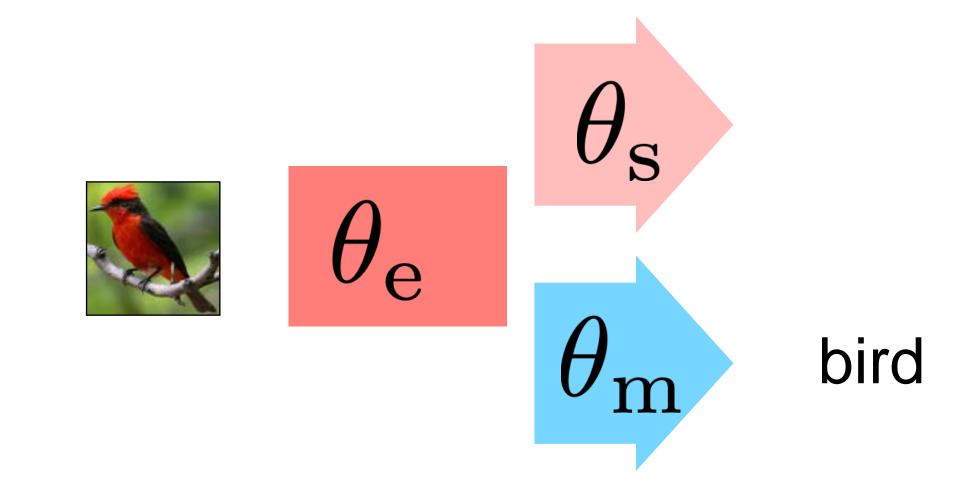
- The test sample x gives us a hint about Q
- No fixed model, but adapt at test time
- One sample learning problem
- No label? Self-supervision!

Algorithm for TTT



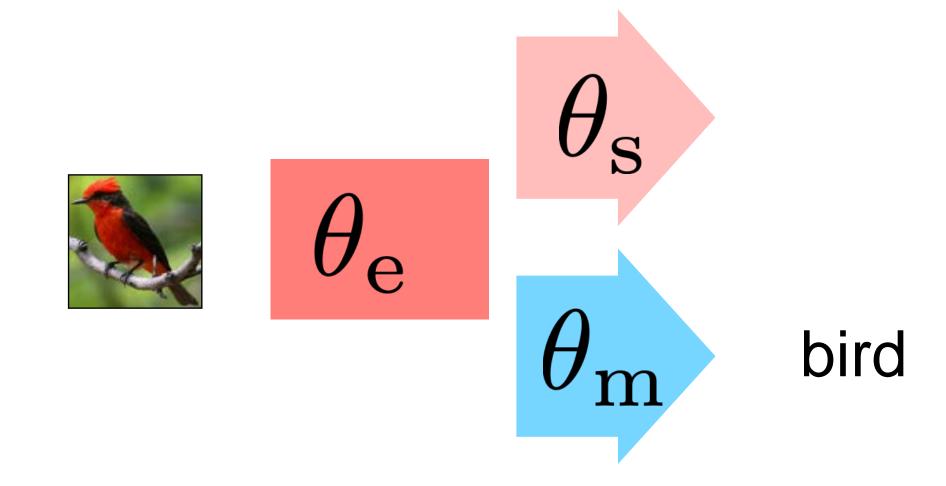
network architecture

training



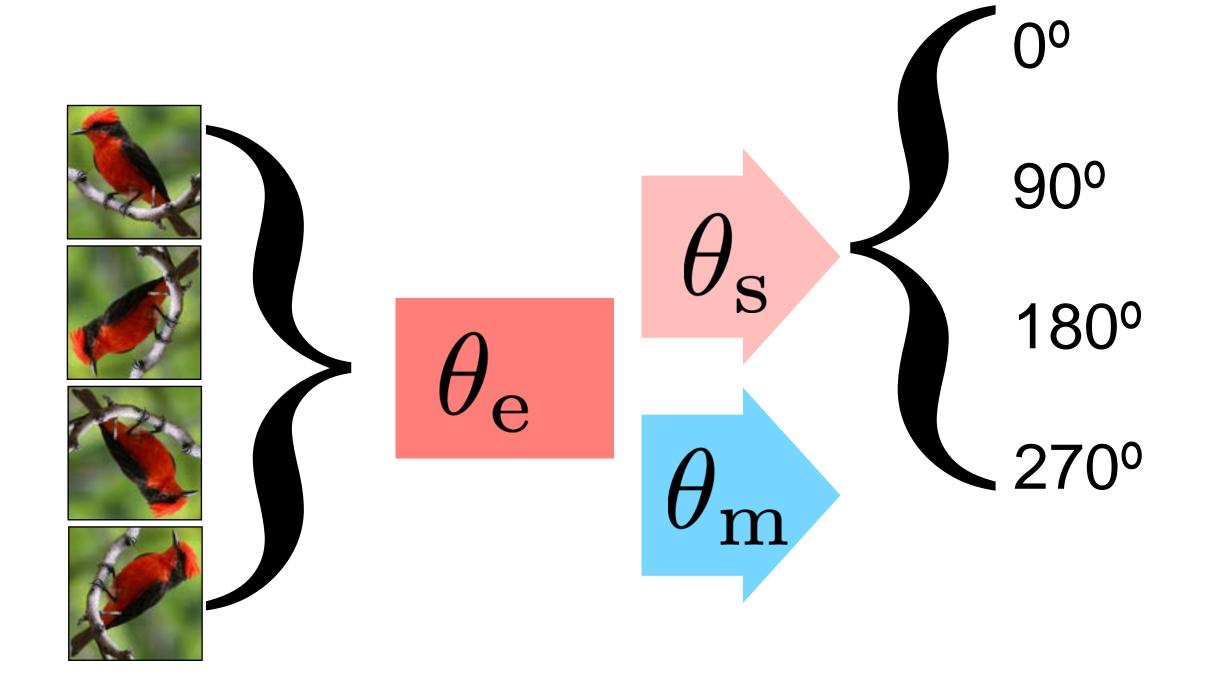
training

$$\ell_{\mathrm{m}}(x, y; \theta_{\mathrm{e}}, \theta_{\mathrm{m}})$$



training

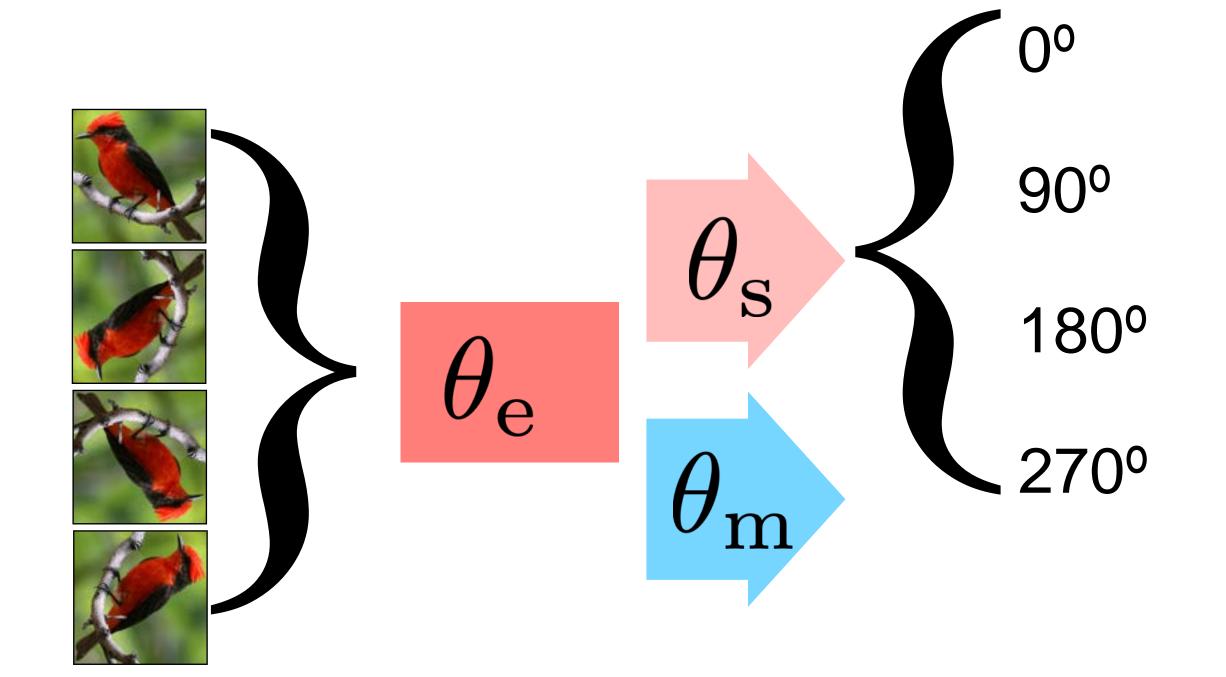
 $\ell_{
m m}(x,y;\theta_{
m e},\theta_{
m m})$



training

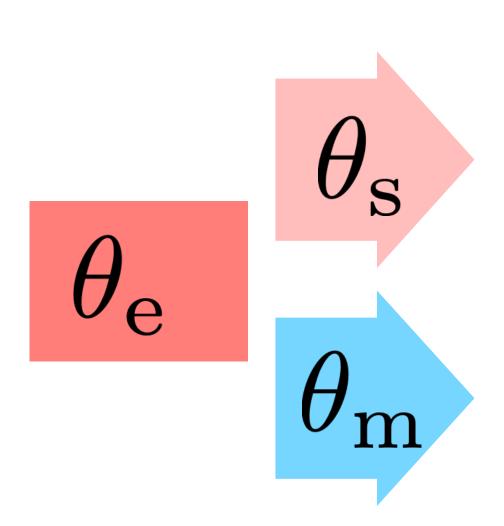
$$\ell_{\mathrm{m}}(x, y; \theta_{\mathrm{e}}, \theta_{\mathrm{m}})$$

$$+\ell_s(x,y_{\mathrm{s}}; heta_e, heta_s)$$



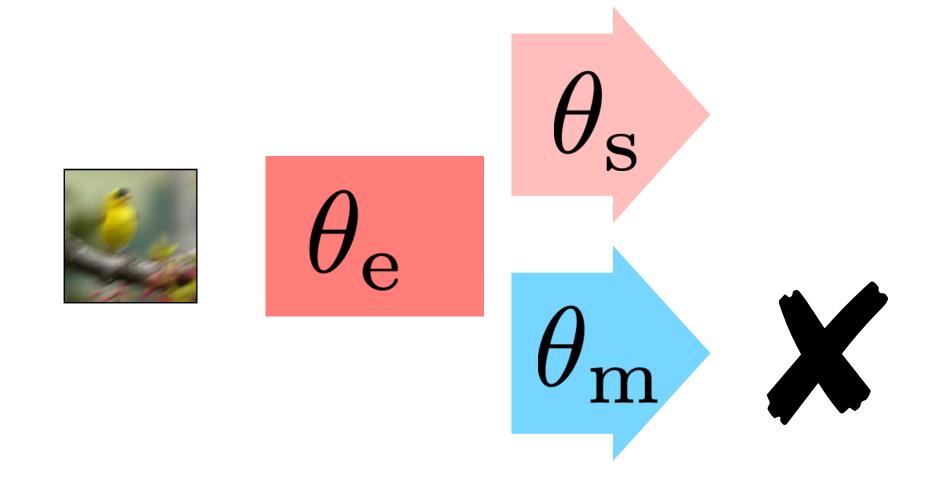
training

$$\min_{ heta_{
m e}, heta_{
m s}, heta_{
m m}} \mathbb{E}_P egin{bmatrix} \ell_{
m m}(x,y; heta_{
m e}, heta_{
m m}) \ +\ell_s(x,y_{
m s}; heta_e, heta_s) \end{bmatrix}$$



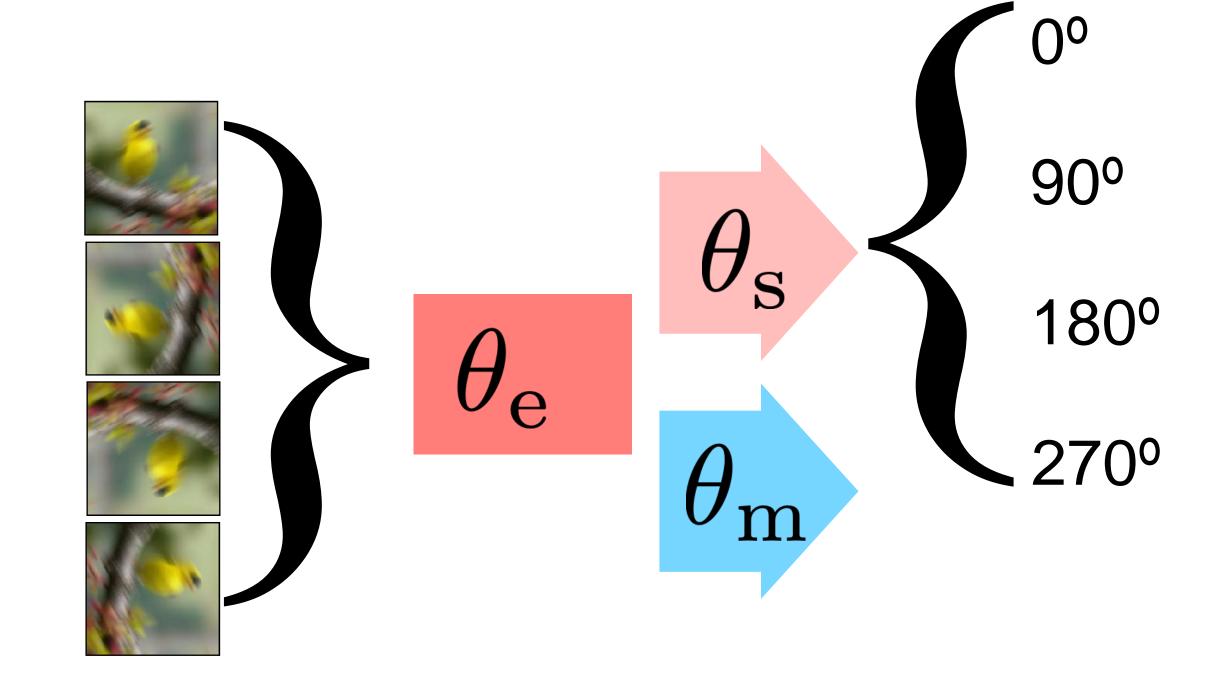
training

$$\min_{ heta_{
m e}, heta_{
m s}, heta_{
m m}} \mathbb{E}_P egin{bmatrix} \ell_{
m m}(x,y; heta_{
m e}, heta_{
m m}) \ +\ell_s(x,y_{
m s}; heta_e, heta_s) \end{bmatrix}$$



training

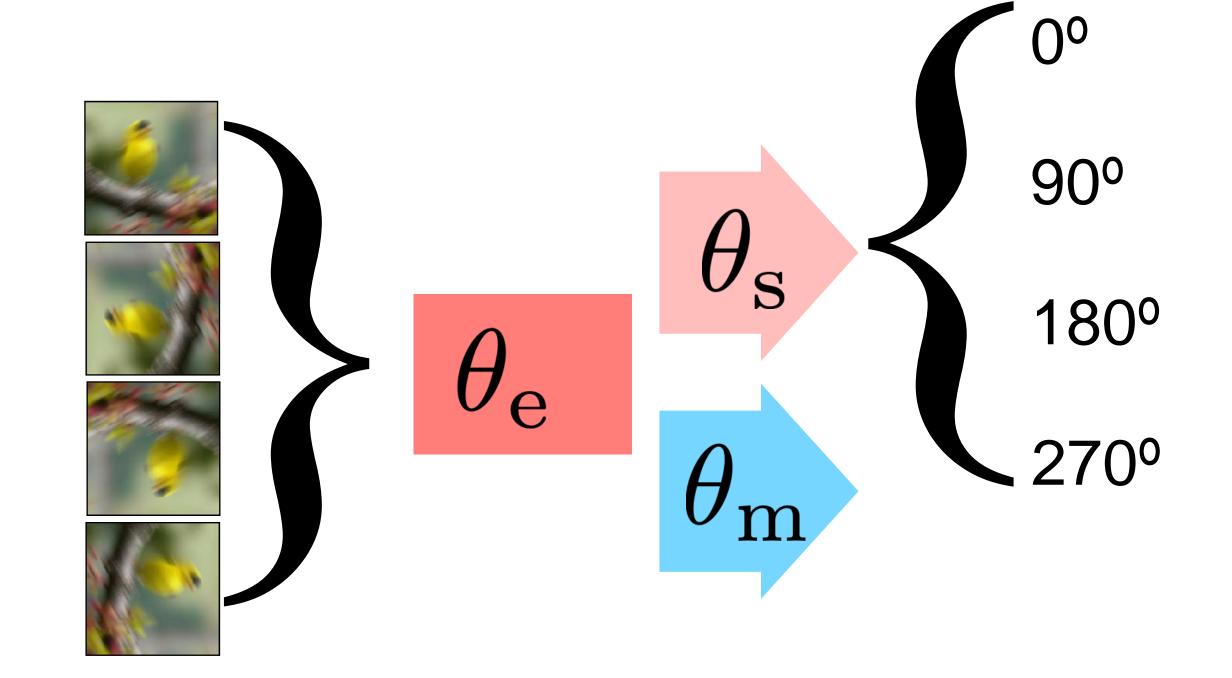
$$\min_{ heta_{
m e}, heta_{
m s}, heta_{
m m}} \mathbb{E}_P egin{bmatrix} \ell_{
m m}(x,y; heta_{
m e}, heta_{
m m}) \ +\ell_s(x,y_{
m s}; heta_e, heta_s) \end{bmatrix}$$



training

$$\min_{ heta_{
m e}, heta_{
m s}, heta_{
m m}} \mathbb{E}_P egin{bmatrix} \ell_{
m m}(x,y; heta_{
m e}, heta_{
m m}) \ +\ell_s(x,y_{
m s}; heta_e, heta_s) \end{bmatrix}$$

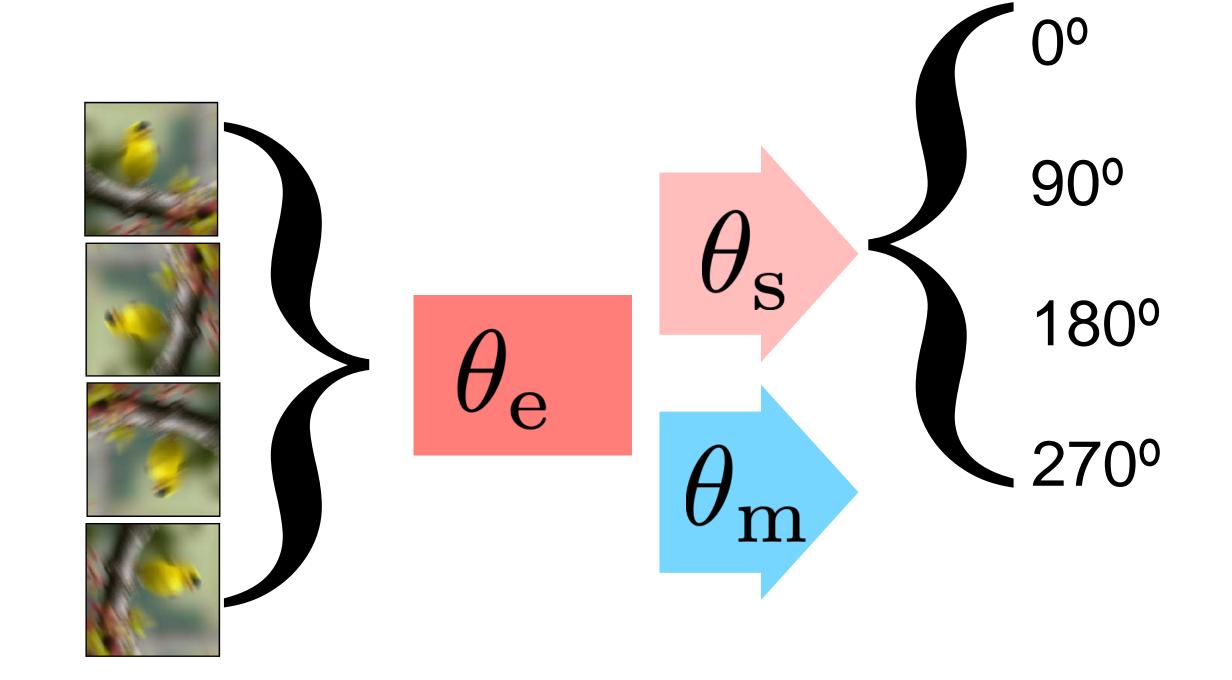
$$\min_{\theta_{\mathrm{e}},\theta_{\mathrm{s}}} \left[\ell_s(x,y_{\mathrm{s}};\theta_e,\theta_s) \right]$$



training

$$\min_{ heta_{
m e}, heta_{
m s}, heta_{
m m}} \mathbb{E}_P egin{bmatrix} \ell_{
m m}(x,y; heta_{
m e}, heta_{
m m}) \ +\ell_s(x,y_{
m s}; heta_e, heta_s) \end{bmatrix}$$

$$\min_{\theta_{\mathrm{e}},\theta_{\mathrm{s}}} \mathbb{E}_{Q} \left[\ell_{s}(x,y_{\mathrm{s}};\theta_{e},\theta_{s}) \right]$$



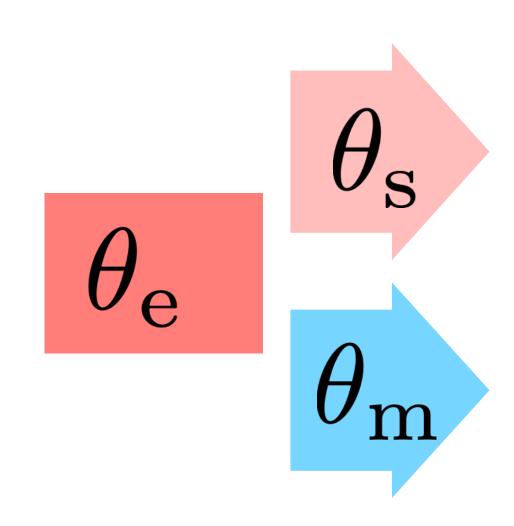
training

$$\min_{ heta_{
m e}, heta_{
m s}, heta_{
m m}} \mathbb{E}_P egin{bmatrix} \ell_{
m m}(x,y; heta_{
m e}, heta_{
m m}) \ +\ell_s(x,y_{
m s}; heta_e, heta_s) \end{bmatrix}$$

testing

$$\min_{ heta_{
m e}, heta_{
m s}} \mathbb{E}_Q \left[\ell_s(x,y_{
m s}; heta_e, heta_s) \right]$$

 $\rightarrow \theta(x)$: make prediction on x



training

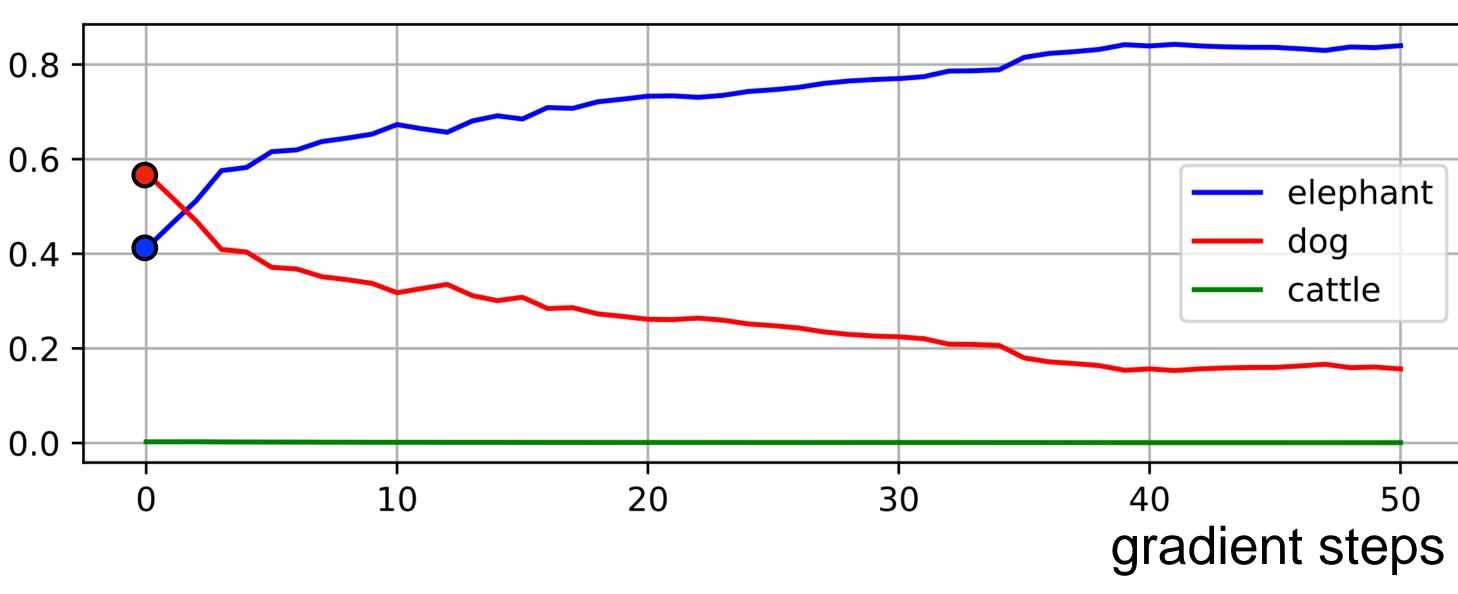
$$\min_{ heta_{
m e}, heta_{
m s}, heta_{
m m}} \mathbb{E}_P egin{bmatrix} \ell_{
m m}(x,y; heta_{
m e}, heta_{
m m}) \ +\ell_s(x,y_{
m s}; heta_e, heta_s) \end{bmatrix}$$

testing

$$\min_{\theta_{\mathrm{e}},\theta_{\mathrm{s}}} \mathbb{E}_{Q} \left[\ell_{s}(x,y_{\mathrm{s}};\theta_{e},\theta_{s}) \right]$$

 $\rightarrow \theta(x)$: make prediction on x

likelihood



training

$$\min_{ heta_{
m e}, heta_{
m s}, heta_{
m m}} \mathbb{E}_P egin{bmatrix} \ell_{
m m}(x,y; heta_{
m e}, heta_{
m m}) \ +\ell_s(x,y_{
m s}; heta_e, heta_s) \end{bmatrix}$$

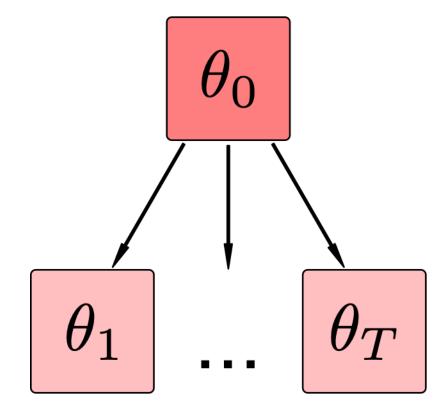
testing

$$\min_{ heta_{
m e}, heta_{
m s}} \mathbb{E}_Q \left[\ell_s(x,y_{
m s}; heta_e, heta_s) \right]$$

 $\rightarrow \theta(x)$: make prediction on x

multiple test samples $x_1, ..., x_T$

 θ_0 : parameters after joint training



training

$$\min_{ heta_{
m e}, heta_{
m s}, heta_{
m m}} \mathbb{E}_P egin{bmatrix} \ell_{
m m}(x,y; heta_{
m e}, heta_{
m m}) \ +\ell_s(x,y_{
m s}; heta_e, heta_s) \end{bmatrix}$$

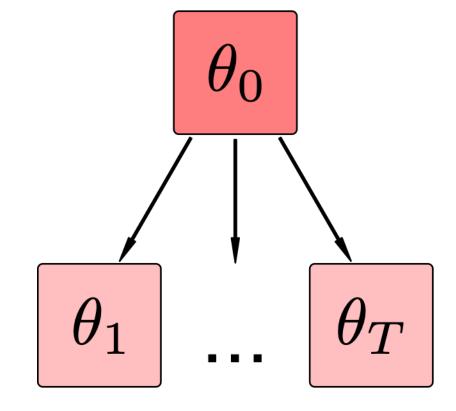
testing

$$\min_{ heta_{
m e}, heta_{
m s}} \mathbb{E}_Q \left[\ell_s(x,y_{
m s}; heta_e, heta_s)
ight]$$

 $\rightarrow \theta(x)$: make prediction on x

multiple test samples $x_1, ..., x_T$ θ_0 : parameters after joint training

standard version
no assumption on
the test samples



training

$$\min_{ heta_{
m e}, heta_{
m s}, heta_{
m m}} \mathbb{E}_P \begin{bmatrix} \ell_{
m m}(x,y; heta_{
m e}, heta_{
m m}) \\ +\ell_s(x,y_{
m s}; heta_e, heta_s) \end{bmatrix}$$

testing

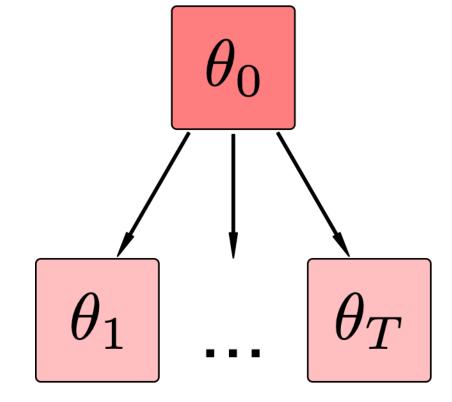
$$\min_{\theta_{\mathrm{e}},\theta_{\mathrm{s}}} \mathbb{E}_{Q} \left[\ell_{s}(x,y_{\mathrm{s}};\theta_{e},\theta_{s}) \right]$$

 $\rightarrow \theta(x)$: make prediction on x

multiple test samples $x_1, ..., x_T$

 θ_0 : parameters after joint training

standard version
no assumption on
the test samples



online version

 $x_1,...,x_T$ come from the same Q or smoothly changing $Q_1,...,Q_T$

$$\theta_0 - \theta_1 - \theta_T$$

Results

examples

Method	CIFAR-10 accuracy (%)	ImageNet accuracy (%)
Object recognition task only	41.4	62.7
Joint training (Hendrycks et al. 2019)	42.4	63.5
TTT standard	45.2	63.8
TTT online	45.4	64.3

Join training: dog

TTT: elephant

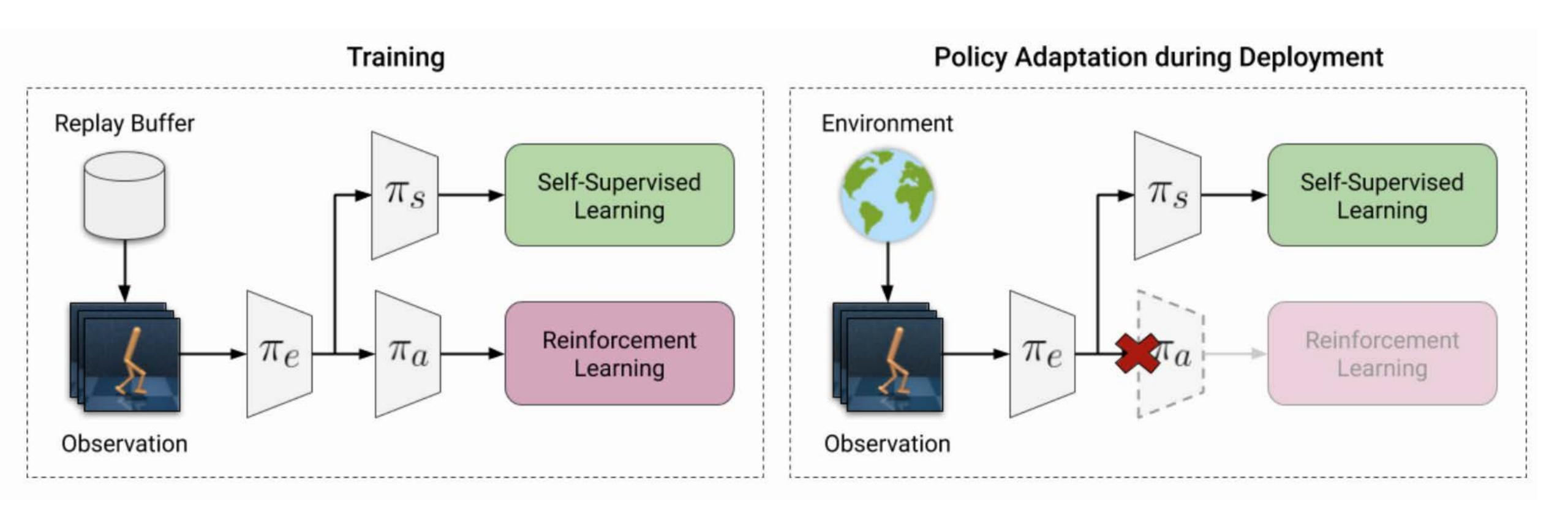
Join training: dog

TTT: cattle

Join training: car

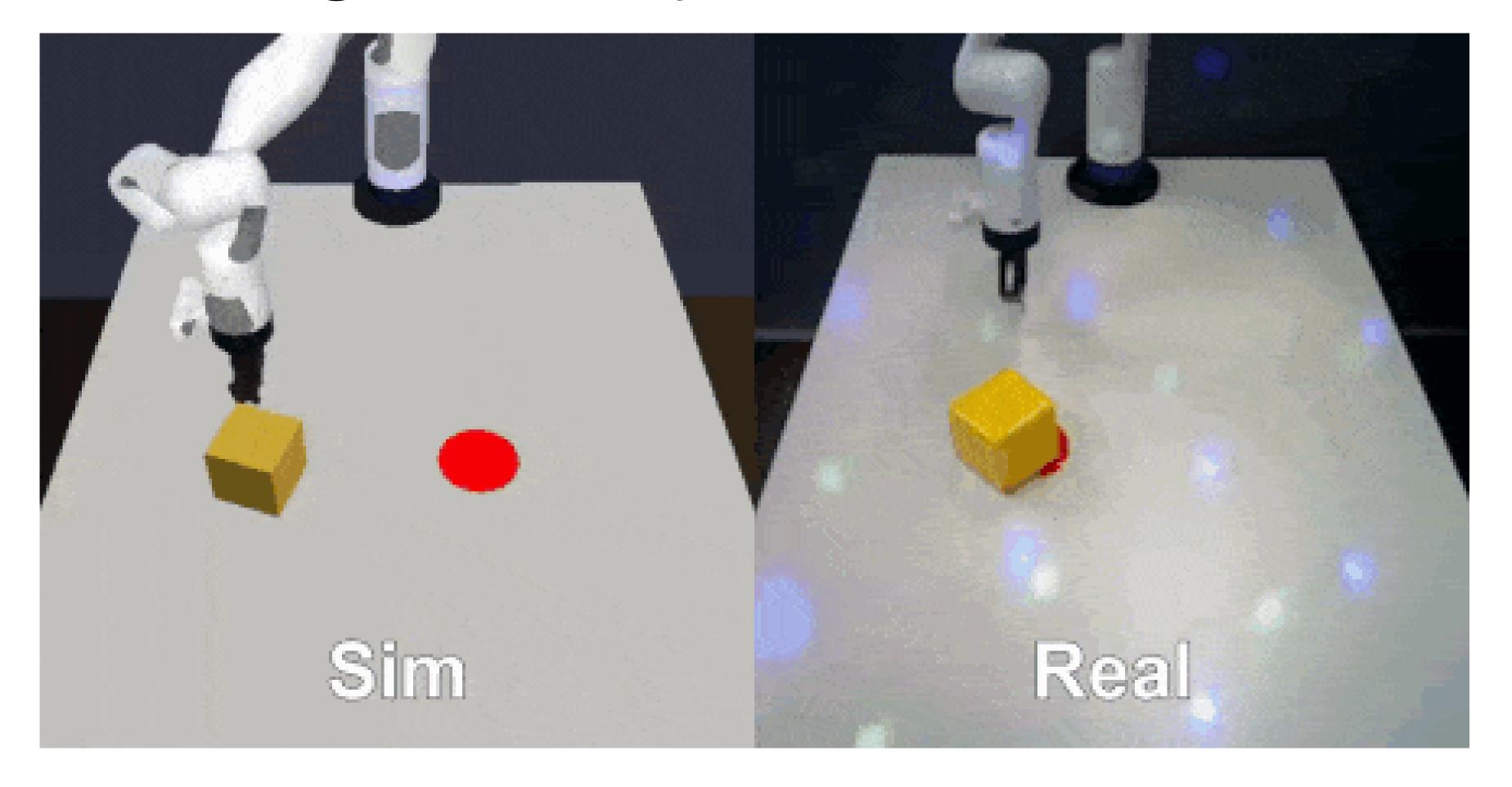
TTT: bus

Self-Supervised Policy Adaptation during Deployment [ICLR'21]



Nicklas Hansen, Yu Sun, Pieter Abbeel, Alexei A. Efros, Lerrel Pinto, Xiaolong Wang, ICLR 2021

Self-Supervised Policy Adaptation during Deployment [ICLR'21]

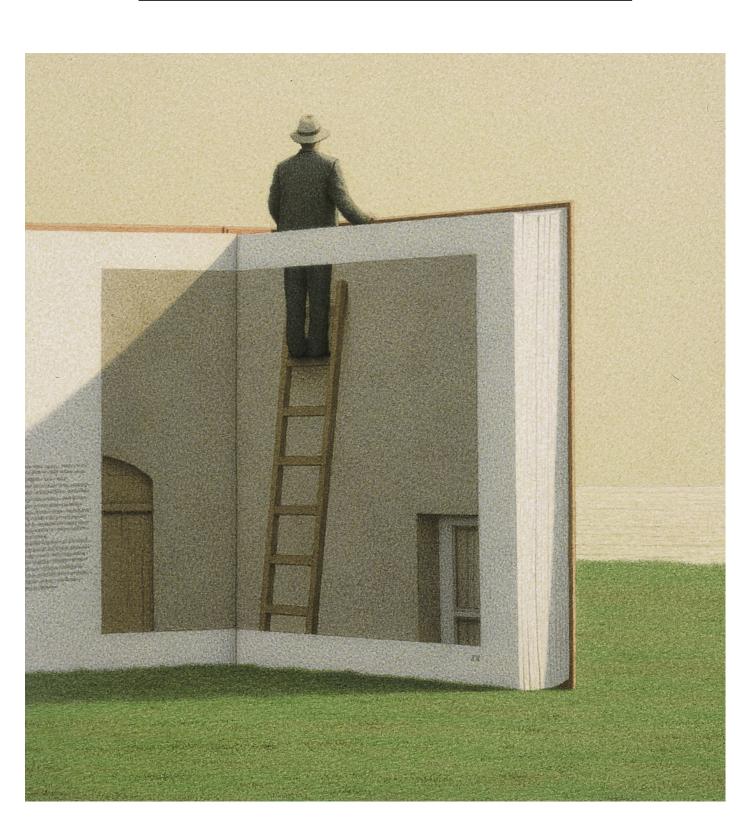


Nicklas Hansen, Yu Sun, Pieter Abbeel, Alexei A. Efros, Lerrel Pinto, Xiaolong Wang, ICLR 2021

Why Self-Supervision?

- 1. To get away from semantic categories

2. To get away from fixed datasets



3. To get away from fixed objectives

What's wrong with fixed objectives?

- Genetic Algorithms
 - Just another way to optimize some objective function
- The magic of evolution:
 - It doesn't optimize any objective
 - Objectives emerge on their own
 - Even death is an emergent property!
- How we can get emergent objectives?
 - Biologists' and economists' answer: arms races

The Five-Year Plan

The Five-Year Plan

HP-80 (1973)

Elektronika DD (1973)

Arms races create emergent objectives

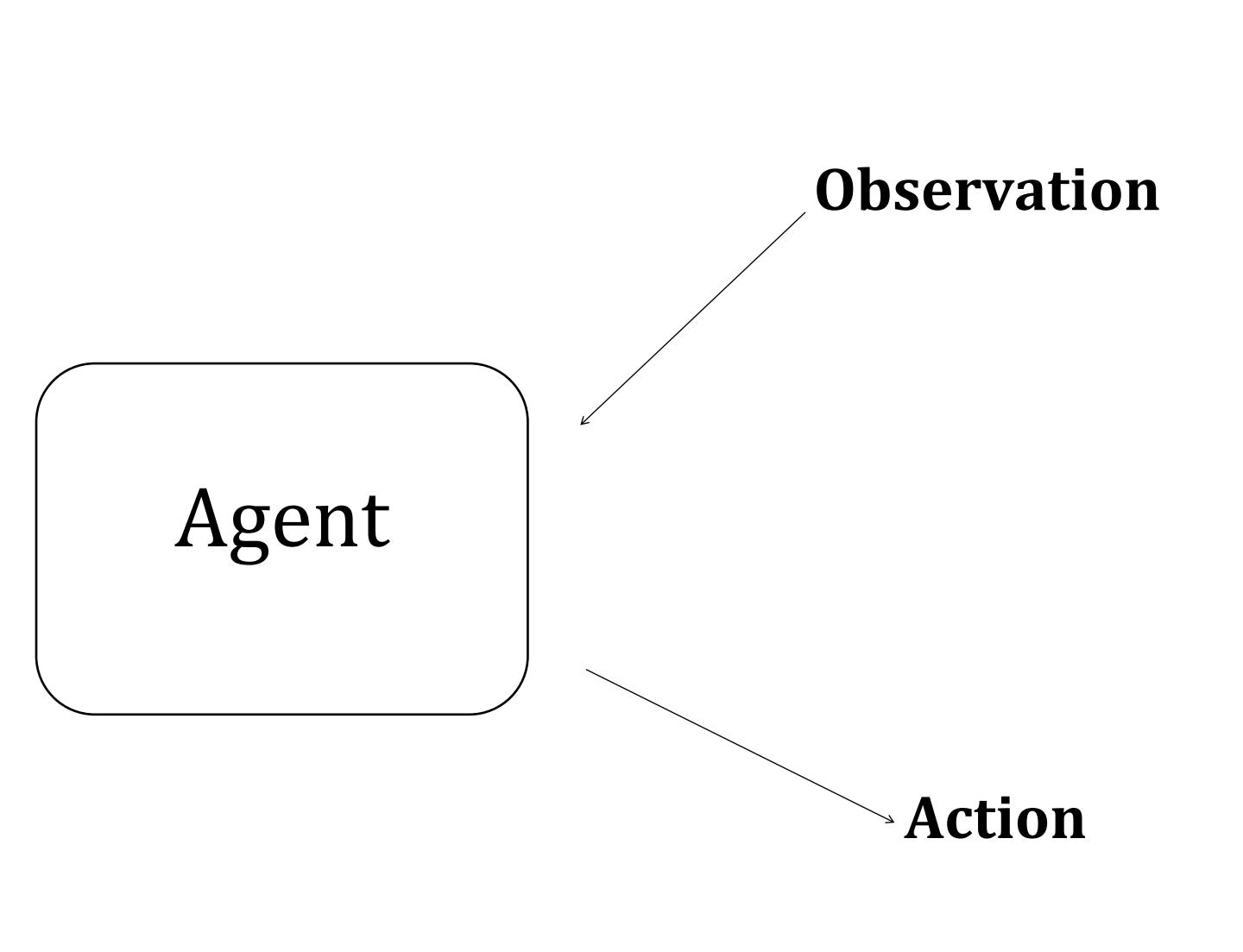
Setting up arms races

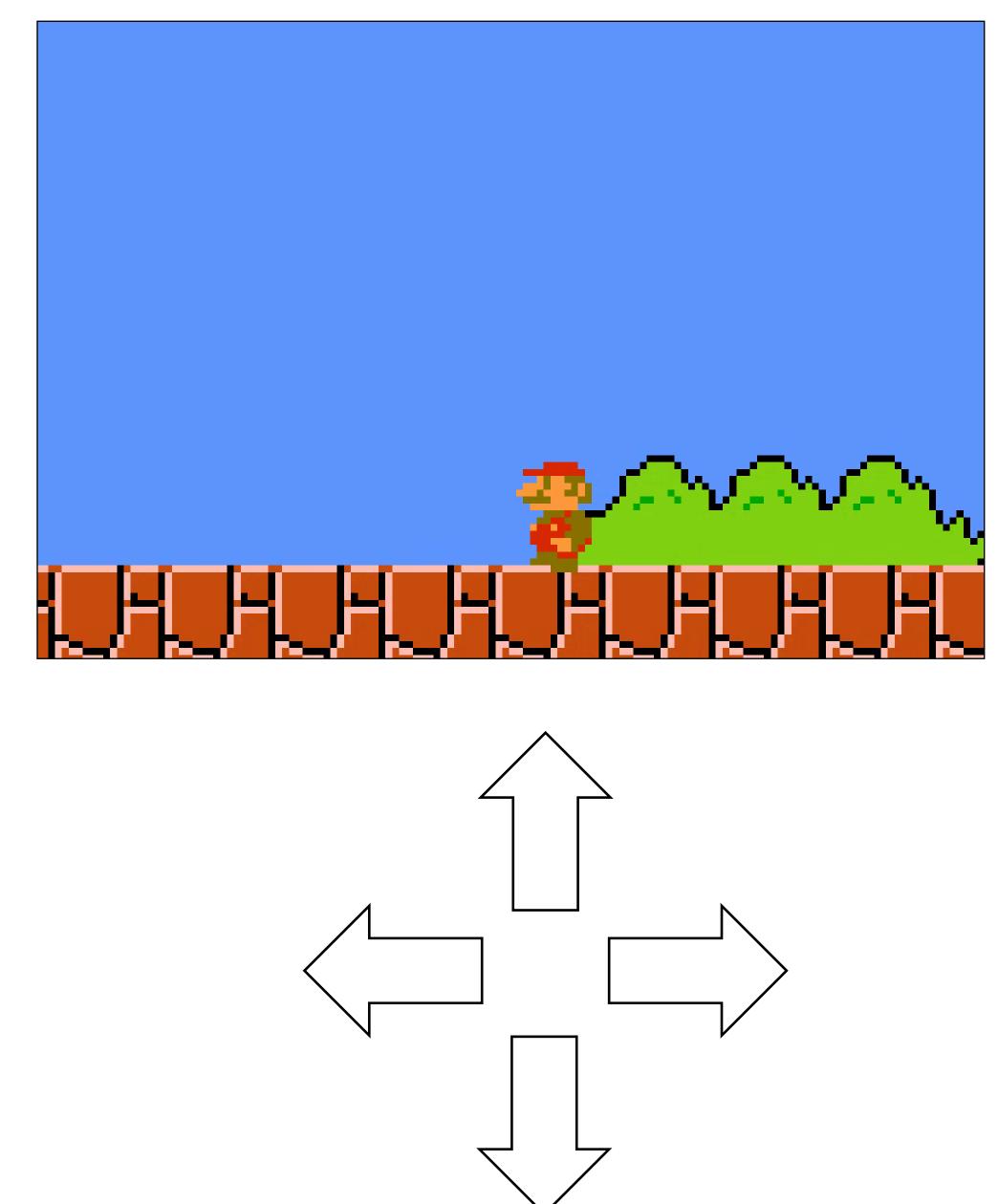
- Self-play
 - symmetric: agent vs itself
 - in practice, still have to specify final objective
- GANs
 - asymmetric: Generator vs. Discriminator
 - in practice, discriminator ends up dominating
- Prediction as meta-objective
 - The world as adversary
 - asymmetric: predicting agent vs. complexity of the world
 - open-ended: in complex world, can always predict further

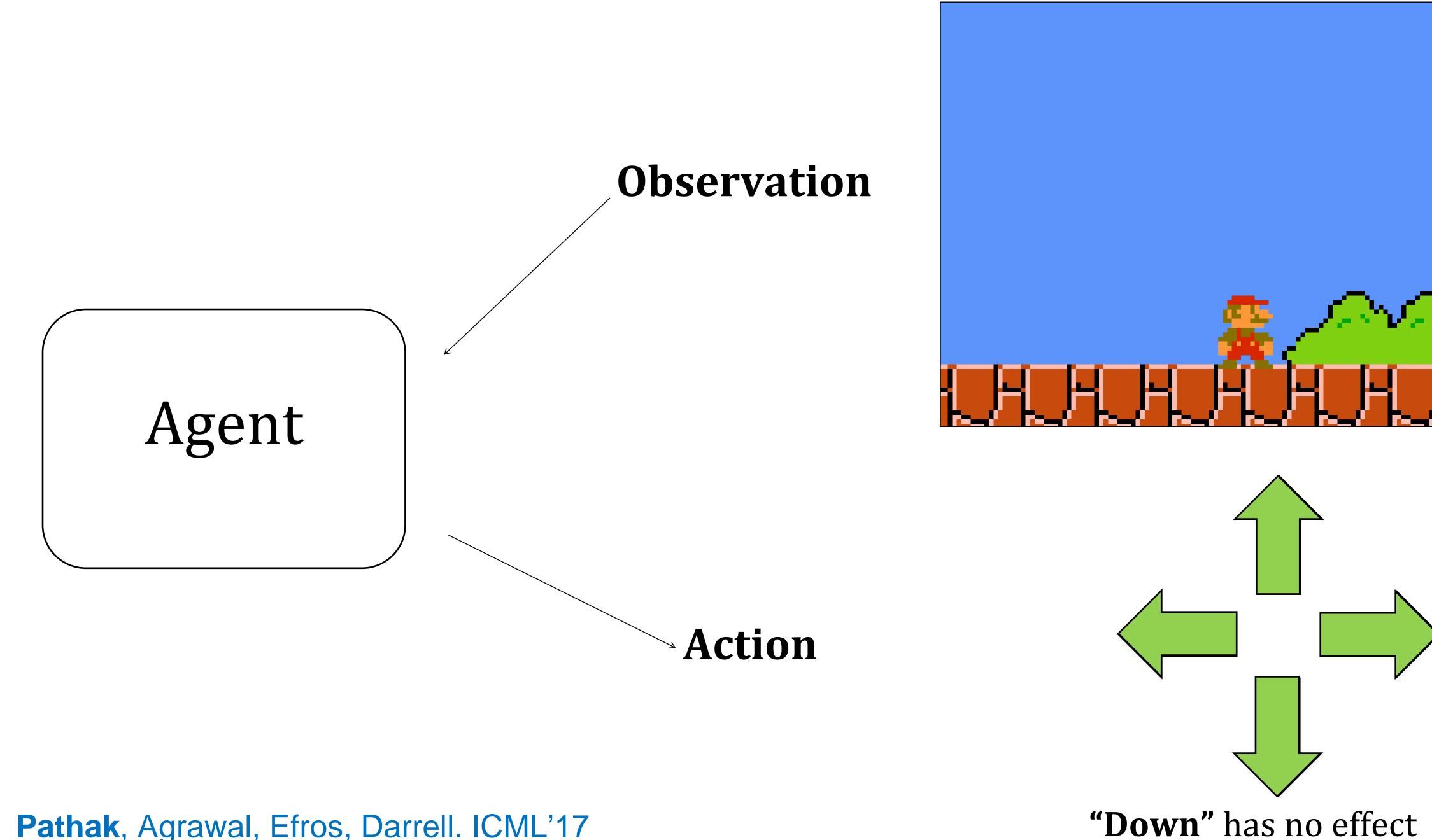
Curiosity-driven Exploration by Self-Supervised Prediction

Deepak Pathak, Pulkit Agrawal, Alexei Efros, Trevor Darrell

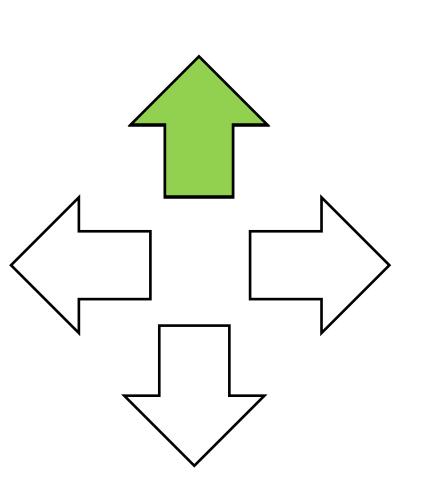
ICML 2017



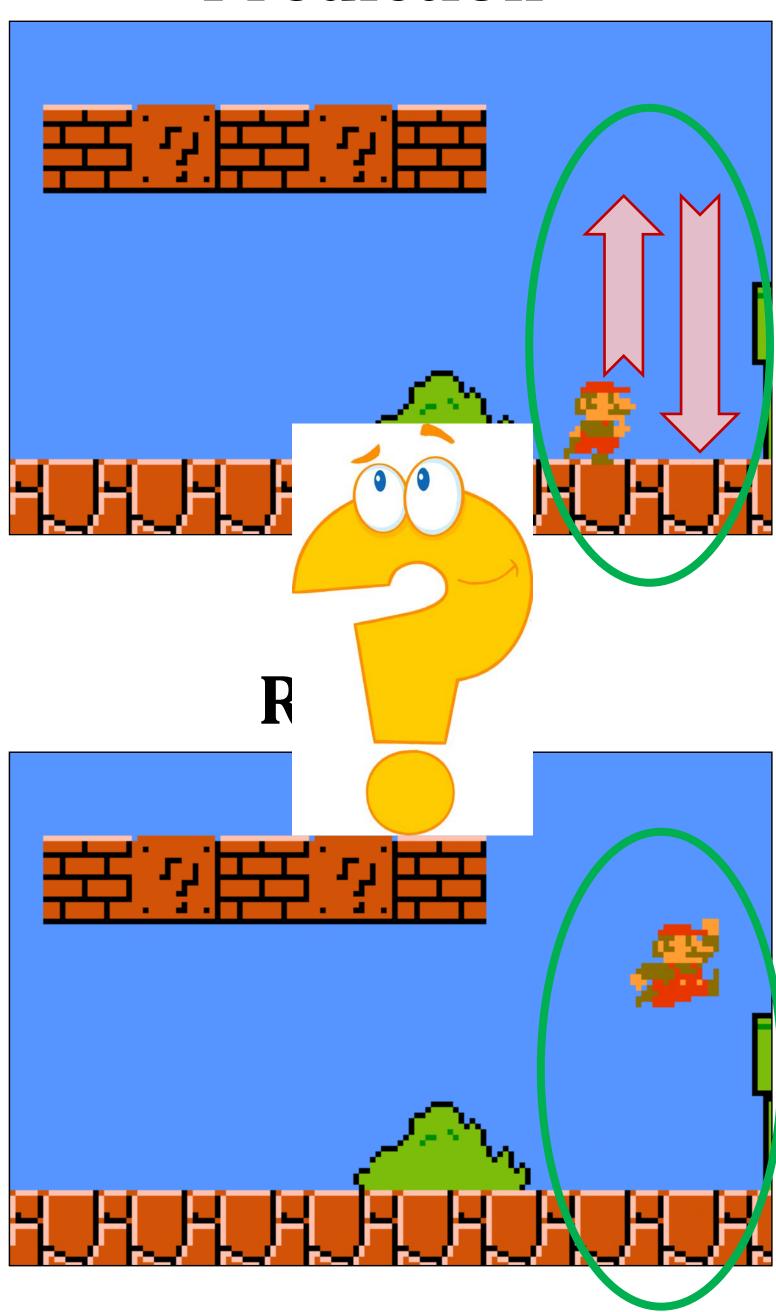




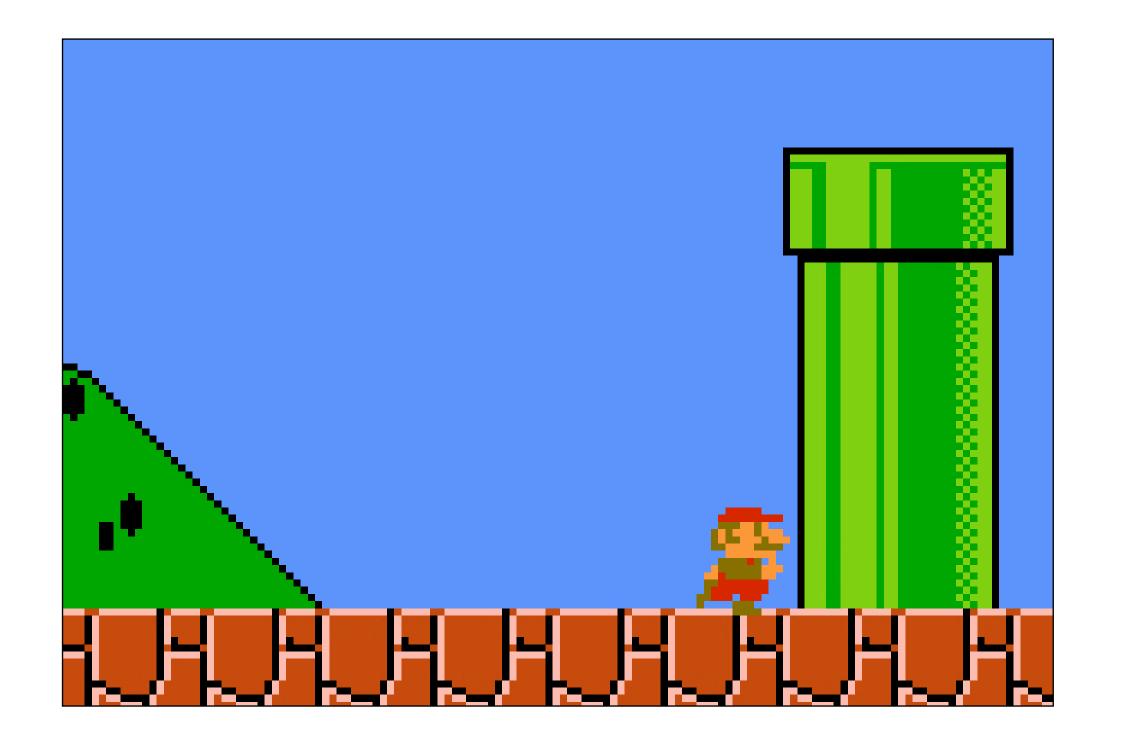
Pathak, Agrawal, Efros, Darrell. ICML'17

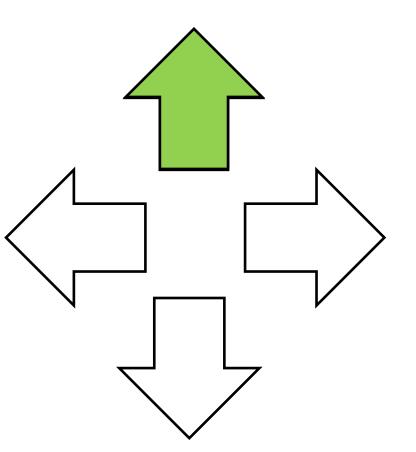


Prediction

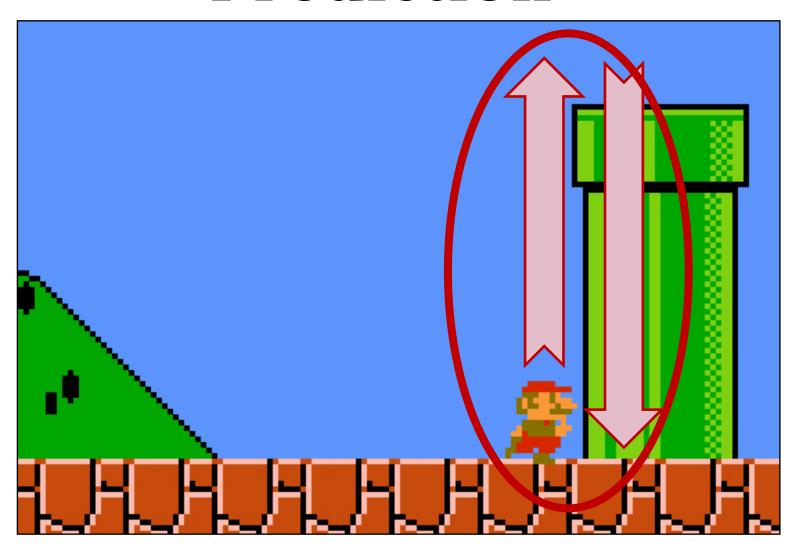


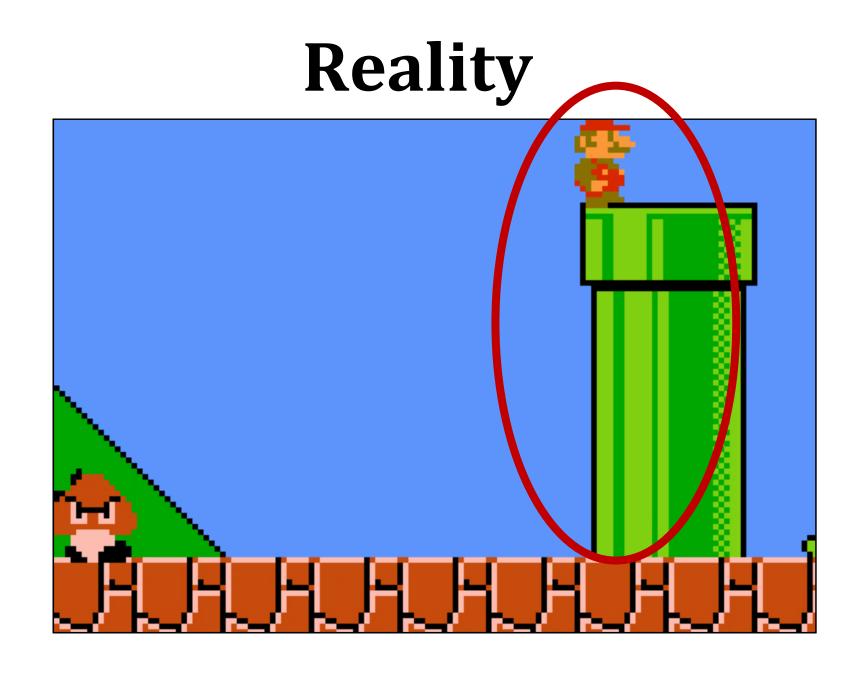
Curiosity ≜ Prediction Error





Prediction



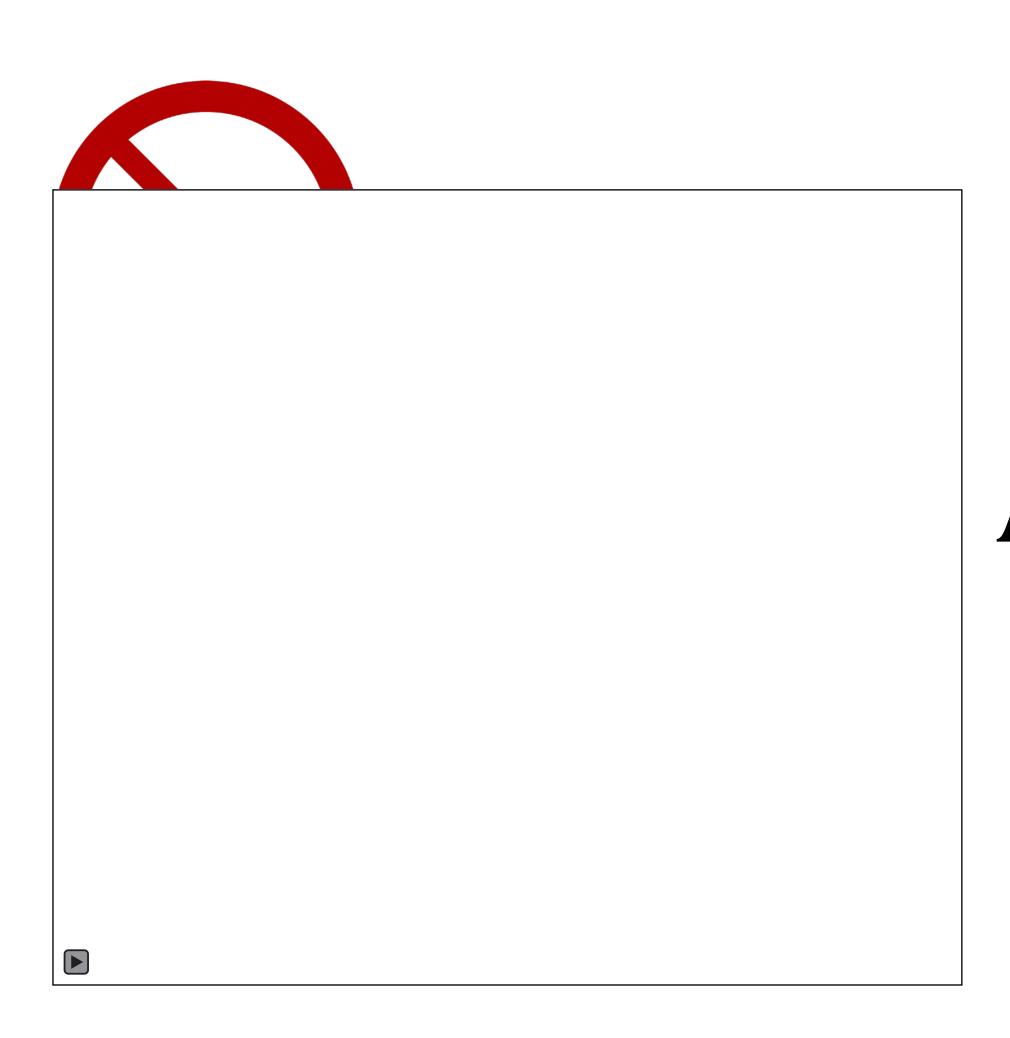


Train a model

Predict consequences of the action Ongoing battle between predictor vs. curiosity

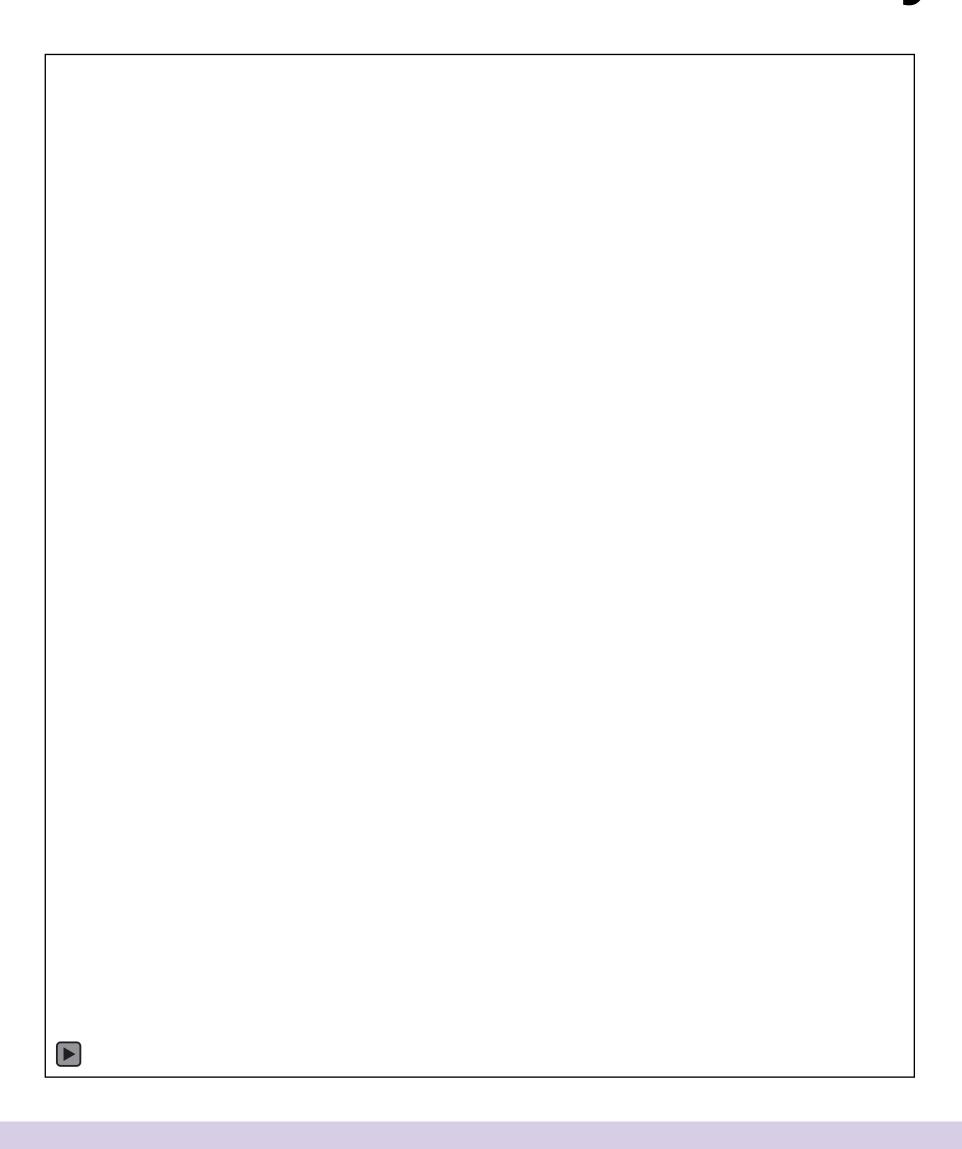
Bad prediction \rightarrow **High** Curiosity

No external reward, only curiosity



After Atuhienstay-tobit vernitaining

Curiosity on both sides... makes a rally



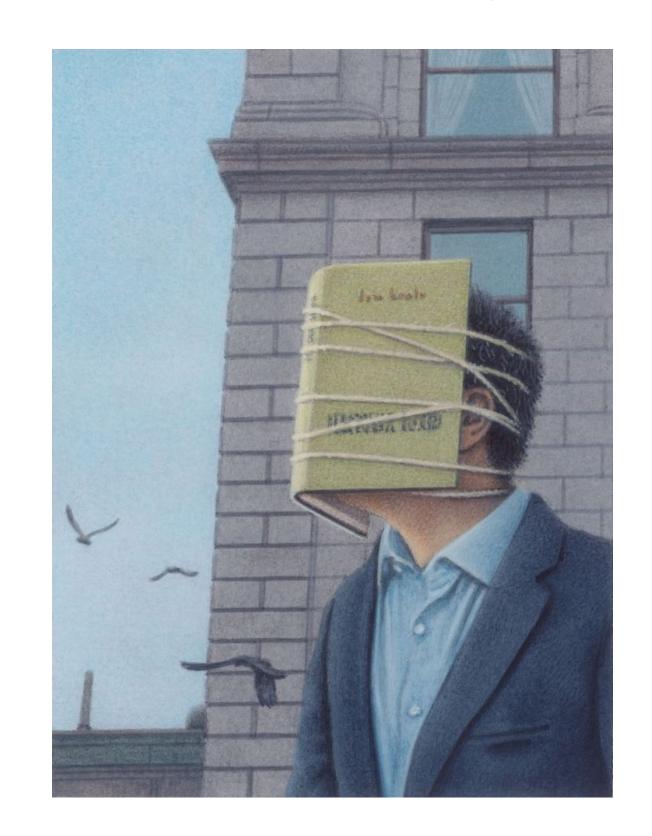
Environment: Multi-player Pong

Artwork by Quint Buchhol

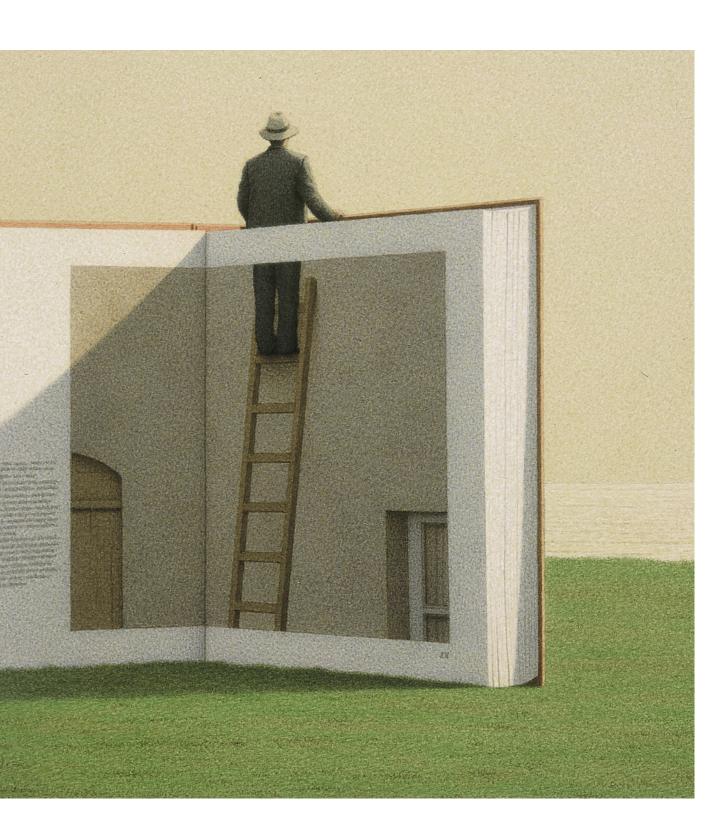
Summary: Why Self-Supervision?

- 1. To get away from semantic categories
- 2. To get away from fixed datasets

3. To get away from fixed objectives

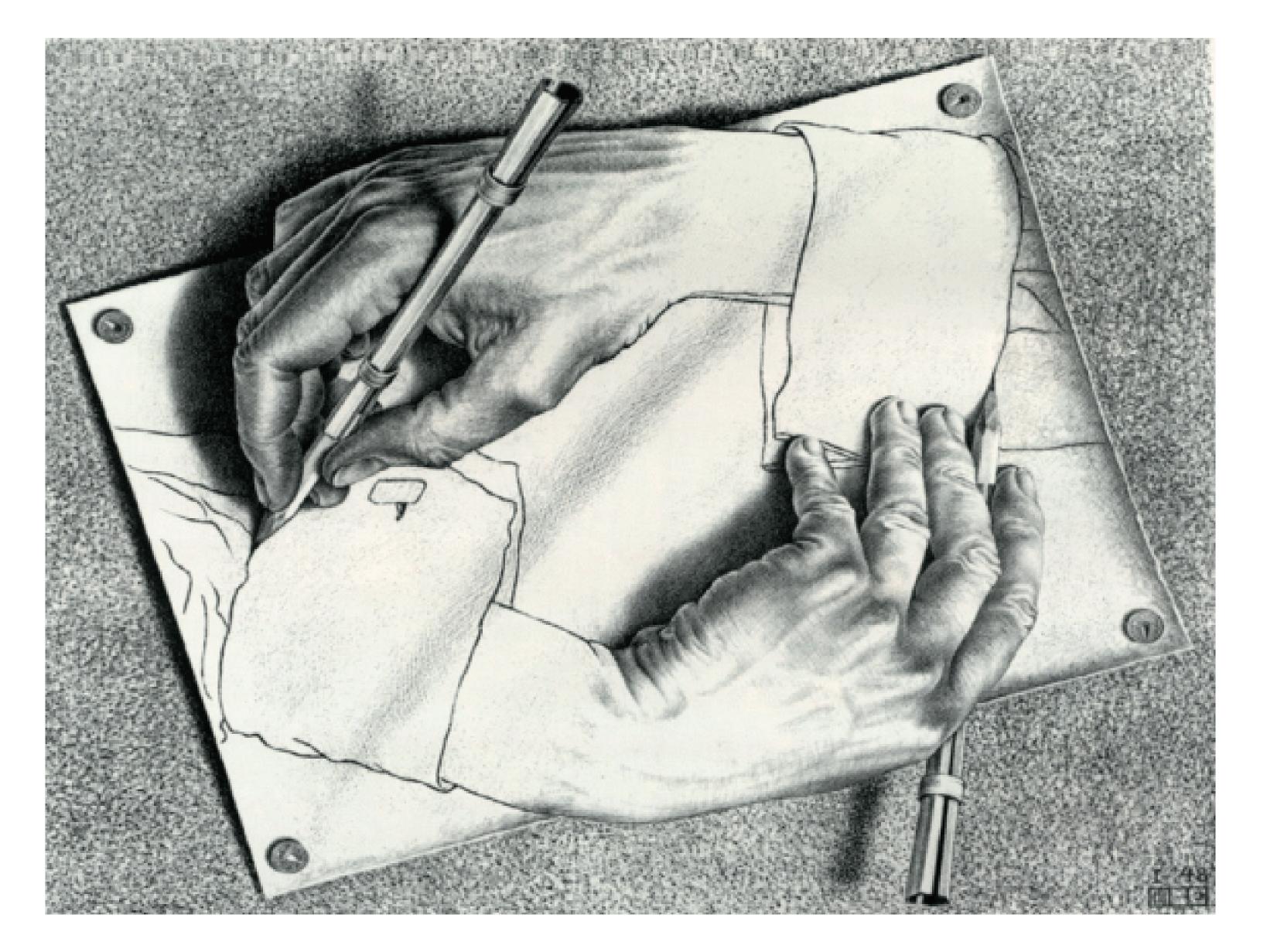


⇒ data-driven association



⇒ continuous, lifelong learning

⇒ emergent objectives



Thank You