

Who Is Your Right Mixup Partner in Positive and Unlabeled Learning?

Changchun Li^{1,2}, Ximing Li^{1,2}, Lei Feng^{3,4}, Jihong Ouyang^{1,2}

¹College of Computer Science and Technology, Jilin University, China ²Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, China ³College of Computer Science, Chongqing University, China ⁴Imperfect Information Learning Team, RIKEN Center for Advanced Intelligence Project, Japan

Background

• Positive and Unlabeled (PU) Learning

PU learning aims to induce a binary classifier from weak training datasets of positive and unlabeled instances.

• Mixup Technique

The mixup is approximately equivalent to applying adversarial training, enabling to improve robustness with even scarce and noisy supervision.

$$\widehat{\mathbf{x}} = \lambda \mathbf{x}_i + (1 - \lambda) \mathbf{x}_i, \quad \widehat{y} = \lambda y_i + (1 - \lambda) y_i, \quad \lambda \sim \text{Beta}(\alpha, \alpha), \ \alpha \in (0, \infty)$$

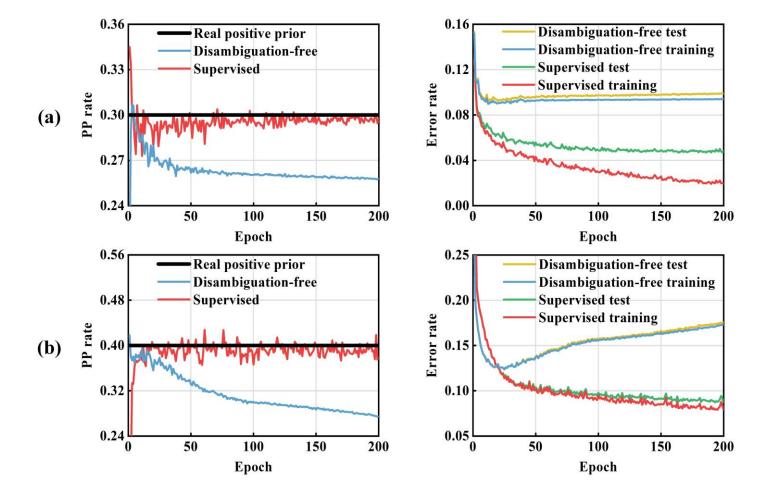
• Disambiguation-free objective of PU learning

All unlabeled instances are treated as pseudo-negative instances, and the binary classifier is trained based on positive and pseudo-negative instances.

$$\mathcal{L}(\mathcal{X}_p, \mathcal{X}_u; \mathbf{\Theta}) = \frac{1}{|\mathcal{X}_p|} \sum_{(\mathbf{x}, y) \in \mathcal{X}_p} \ell(f(\mathbf{x}; \mathbf{\Theta}), y) + \frac{\beta}{|\mathcal{X}_u|} \sum_{(\mathbf{x}, y) \in \mathcal{X}_u} \ell(f(\mathbf{x}; \mathbf{\Theta}), y)$$

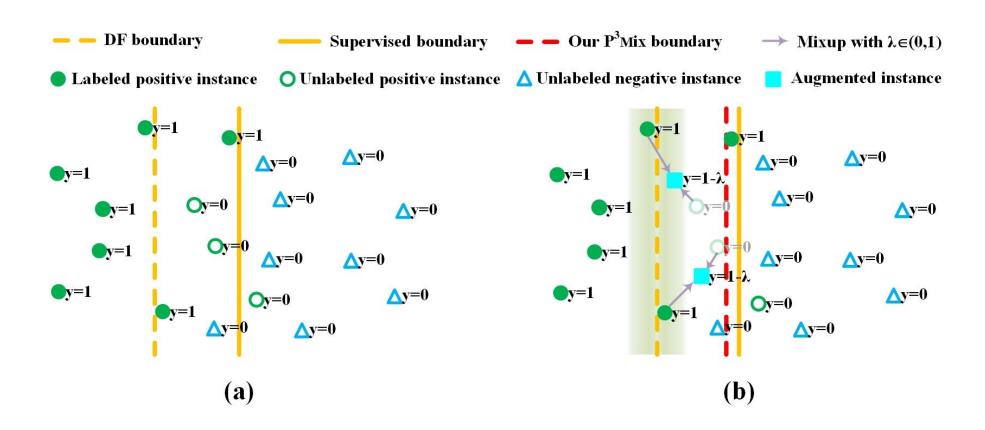
• Decision boundary deviation phenomenon in PU learning

The number of training instances predicted as positive (PP rate) by the disambiguation-free classifier tends to be smaller than usual.



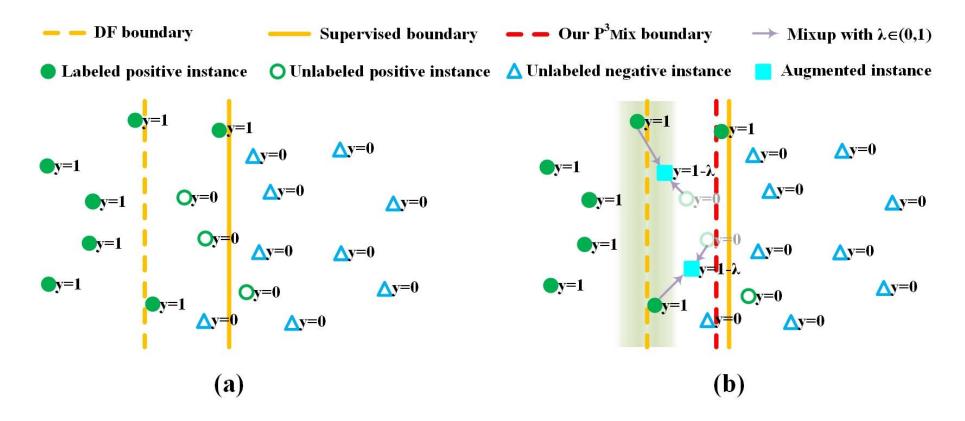
• Decision boundary deviation phenomenon in PU learning

The disambiguation-free boundary tends to deviate from the fully supervised boundary towards the positive side.



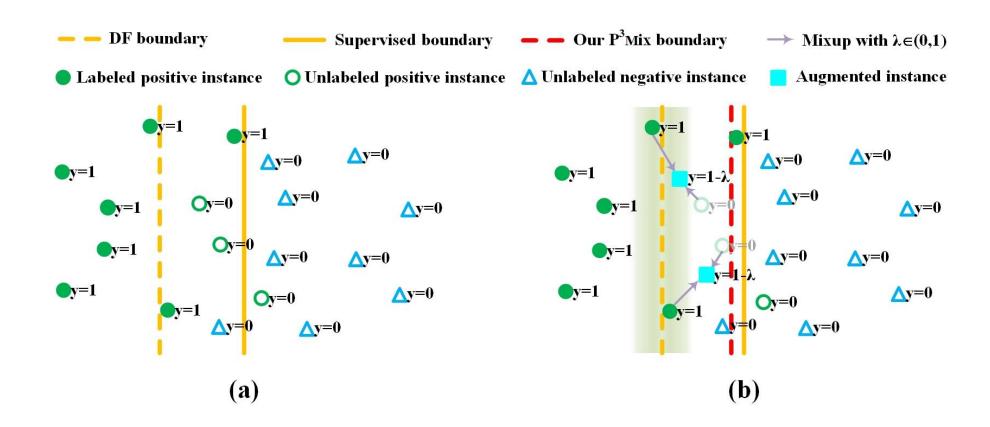
• Decision boundary deviation phenomenon in PU learning

This is mainly caused by the marginal pseudo-negative instances, which lie between the two boundaries, and are more likely to be positive but actually annotated by negative.



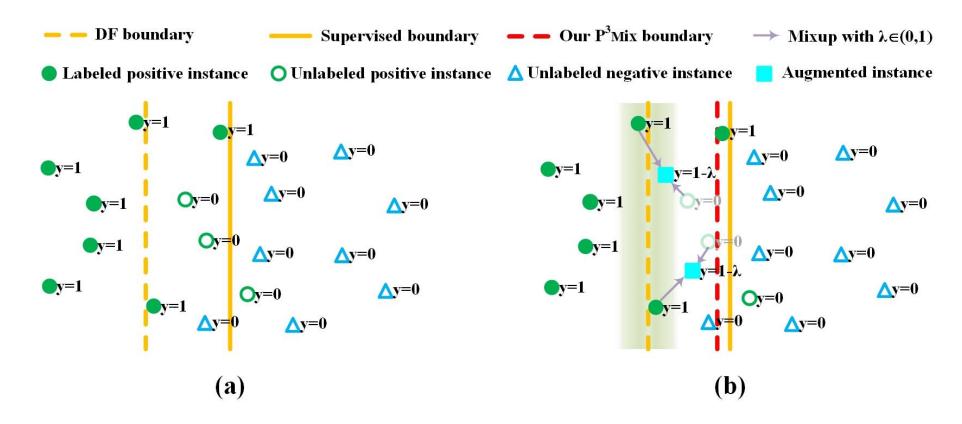
• Heuristic mixup for PU learning

We extend mixup to a specific heuristic version for PU learning, enabling to achieve both data augmentation and supervision correction.



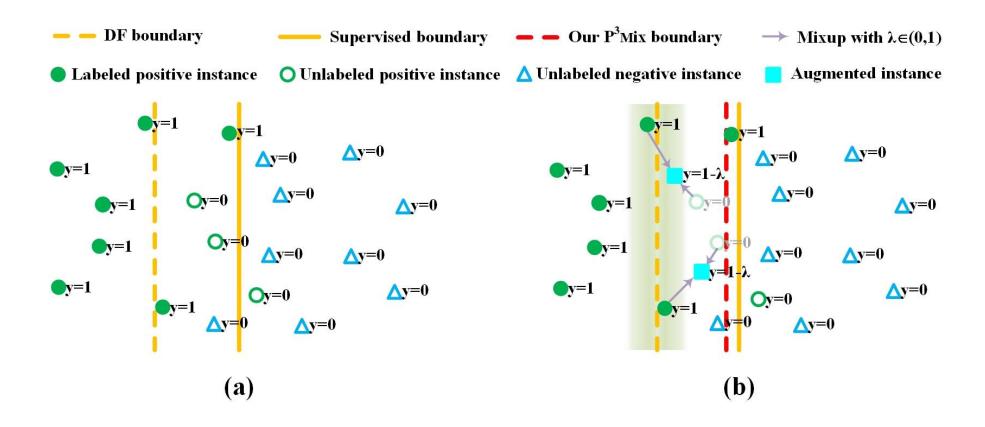
• Heuristic mixup for PU learning

It transforms the marginal pseudo-negative instances into augmented instances which are partially positive and yet also lie between the two boundaries, so as to push the learned boundary towards the fully supervised one.



• Heuristic mixup for PU learning

This can be achieved by selecting the mixup partners for marginal pseudonegative instances from the positive instances that are around the learned boundary.



P³Mix

• Objective of P³Mix

P³Mix transforms batches of positive instances $\mathcal{X}_p \subset \mathcal{P}$ and pseudo-negative ones $\mathcal{X}_u \subset \mathcal{U}$ into the batches of augmented instances \mathcal{X}_p and \mathcal{X}_u using the proposed heuristic mixup, and its objective is given by:

$$\mathcal{L}(\widehat{\mathcal{X}}_{p},\widehat{\mathcal{X}}_{u};\mathbf{\Theta}) = \frac{1}{|\widehat{\mathcal{X}}_{p}|} \sum_{(\widehat{\mathbf{x}},\widehat{y}) \in \widehat{\mathcal{X}}_{p}} \ell(f(\widehat{\mathbf{x}};\mathbf{\Theta}),\widehat{y}) + \frac{\beta}{|\widehat{\mathcal{X}}_{u}|} \sum_{(\widehat{\mathbf{x}},\widehat{y}) \in \widehat{\mathcal{X}}_{u}} \ell(f(\widehat{\mathbf{x}};\mathbf{\Theta}),\widehat{y}),$$

$$\widehat{\mathcal{X}}_{p},\widehat{\mathcal{X}}_{u} = \text{HeuristicMixup}(\mathcal{X}_{p},\mathcal{X}_{u},\alpha),$$

P³Mix

- Heuristic mixup
- 1. For each instance $(\mathbf{x}_i, y_i) \in \mathcal{X}_p \cup \mathcal{X}_u$ we select a mixup partner (\mathbf{x}_j, y_j) to generate an augmented instance $(\hat{\mathbf{x}}_i, \hat{y}_i)$ by using the modified mixup operator:

$$\widehat{\mathbf{x}}_i = \lambda' \mathbf{x}_i + (1 - \lambda') \mathbf{x}_j, \quad \widehat{y}_i = \lambda' y_i + (1 - \lambda') y_j, \quad \lambda' = \max(\lambda, 1 - \lambda), \\ \lambda \sim \text{Beta}(\alpha, \alpha), \quad \alpha \in (0, \infty),$$

2. Select the mixup partner for each of marginal pseudo-negative instances $\mathcal{X}_{mpn} \subset \mathcal{X}_u$ from the candidate mixup pool $\mathcal{X}_{cnd} \subset \mathcal{P}$ of positive instances that are around the current learned boundary; Select the mixup partners for positive instances \mathcal{X}_p and other pseudo-negative instances $\mathcal{X}_u \setminus \mathcal{X}_{mpn}$ from both positive and pseudo-negative ones $\mathcal{X}_p \cup \mathcal{X}_u$

$$(\mathbf{x}_j, y_j) \sim egin{cases} ext{Uniform}(\mathcal{X}_{cnd}) & ext{if } (\mathbf{x}_i, y_i) \in \mathcal{X}_{mpn}, \ ext{Uniform}(\mathcal{X}_p \cup \mathcal{X}_u) & ext{if } (\mathbf{x}_i, y_i) \in \mathcal{X}_p \cup \mathcal{X}_u \setminus \mathcal{X}_{mpn}. \end{cases}$$

P³Mix

• Marginal pseudo-negative instance estimation

We define the marginal pseudo-negative instances as the "unreliable" pseudo-negative instances measured by the predictive scores with thresholding $\gamma \in [0.5,1]$

$$\mathcal{X}_{mpn} = \{ (\mathbf{x}, y = 0) | (\mathbf{x}, y = 0) \in \mathcal{X}_u, 1 - \gamma \le f(\mathbf{x}; \mathbf{\Theta}) \le \gamma \},$$

Candidate mixup pool

For each positive instance we compute its entropy value of the predictive score, and update the candidate mixup pool with the positive instances with the top-k maximum entropy values as follows:

$$\mathcal{X}_{cnd} = \big\{ (\mathbf{x}, y = 1) | (\mathbf{x}, y = 1) \in \mathcal{P}, \mathcal{H}(f(\mathbf{x}; \boldsymbol{\Theta})) \in \text{Rank}(\{\mathcal{H}(f(\mathbf{x}_i; \boldsymbol{\Theta}))\}_{i=1}^{n_p}) \big\},$$

Robustness of P³Mix

• Early-learning regularization and P³Mix-E

We employ the early-learning regularization to prevent the memorization of imprecise supervision.

$$\mathcal{R}_{elr}(\{(\widehat{\mathbf{x}}_i, \widetilde{\mathbf{y}}_i)\}_{i=1}^{|\widehat{\mathcal{X}}_p| + |\widehat{\mathcal{X}}_u|}; \mathbf{\Theta}) = \frac{1}{|\widehat{\mathcal{X}}_p| + |\widehat{\mathcal{X}}_u|} \sum_{i=1}^{|\widehat{\mathcal{X}}_p| + |\widehat{\mathcal{X}}_u|} \log(1 - \langle f(\widehat{\mathbf{x}}_i; \mathbf{\Theta}), \widetilde{\mathbf{y}}_i \rangle)$$

• Pseudo-negative instance correction and P³Mix-C

We focus on the pseudo-negative instances with high confidence to be positive:

$$\{(\mathbf{x}, y = 0) | (\mathbf{x}, y = 0) \in \mathcal{X}_u, f(\mathbf{x}; \mathbf{\Theta}) > \gamma\}$$

and directly revise their labels to positive before their corresponding mixup operators.

Experiment 1: Classification Accuracy

P³Mix-E and P³Mix-C consistently outperform all PU learning baselines on all benchmark datasets, indicating their superior performance.

Table 2: Results of classification accuracy (mean±std). The highest scores among PU learning methods are indicated in **bold**.

Dataset	F-MNIST-1	F-MNIST-2	CIFAR-10-1	CIFAR-10-2	STL-10-1	STL-10-2
uPU	71.3 ± 1.4	84.0 ± 4.0	76.5 ± 2.5	71.6 ± 1.4	76.7 ± 3.8	78.2 ± 4.1
nnPU	89.7 ± 0.8	88.8 ± 0.9	84.7 ± 2.4	83.7 ± 0.6	77.1 ± 4.5	80.4 ± 2.7
nnPU+mixup	91.4 ± 0.3	88.2 ± 0.7	87.2 ± 0.6	85.8 ± 1.2	79.8 ± 0.8	82.2 ± 0.9
Self-PU	90.8 ± 0.4	89.1 ± 0.7	85.1 ± 0.8	83.9 ± 2.6	78.5 ± 1.1	80.8 ± 2.1
PAN	88.7 ± 1.2	83.6 ± 2.5	87.0 ± 0.3	82.8 ± 1.0	77.7 ± 2.5	79.8 ± 1.4
VPU	90.6 ± 1.2	$86.8 {\pm} 0.8$	86.8 ± 1.2	82.5 ± 1.1	78.4 ± 1.1	82.9 ± 0.7
MIXPUL	87.5 ± 1.5	89.0 ± 0.5	87.0 ± 1.9	87.0 ± 1.1	77.8 ± 0.7	78.9 ± 1.9
PULNS	90.7 ± 0.5	87.9 ± 0.5	87.2 ± 0.6	83.7 ± 2.9	80.2 ± 0.8	83.6 ± 0.7
P ³ Mix-E	91.9±0.3	89.5±0.5	88.2±0.4	84.7±0.5	80.2±0.9	83.7±0.7
Р ³ міх-С	92.0 ± 0.4	89.4 ± 0.3	$\textbf{88.7} {\pm} \textbf{0.4}$	87.9 ± 0.5	80.7 ± 0.7	84.1 ± 0.3
Supervised	95.2 ± 0.2	95.2 ± 0.2	91.3 ± 0.3	91.3 ± 0.3	85.6 ± 0.6	85.6 ± 0.6

Experiment 2: Ablation Study

- 1. The proposed heuristic mixup can significantly improve the classification performance.
- 2. Both early-learning regularization and pseudo-negative instance correction contribute to the improvement of the classification performance in all cases.

Table 3: Results of ablative study (mean±std). The highest scores are indicated in **bold**.

Dataset	F-MNIST-1	F-MNIST-2	CIFAR-10-1	CIFAR-10-2	STL-10-1	STL-10-2
DF	75.2 ± 1.2	62.7 ± 2.8	72.0 ± 3.2	57.4 ± 3.7	78.1 ± 0.6	80.6 ± 2.4
DF+mixup	78.4 ± 1.7	72.4 ± 1.4	79.2 ± 3.0	67.4 ± 2.5	78.9 ± 0.3	$80.7{\pm}1.9$
P^3 Mix	87.0 ± 1.1	79.0 ± 1.6	87.0 ± 1.1	84.3 ± 0.6	79.8 ± 0.7	83.4 ± 0.7
DF-E	90.1 ± 0.7	74.2 ± 5.5	$82.4{\pm}1.6$	69.4 ± 3.0	67.3 ± 2.0	75.0±3.7
DF-E+mixup	90.6 ± 0.7	86.1 ± 2.5	85.7 ± 0.7	76.4 ± 0.9	78.3 ± 1.1	79.3 ± 2.3
Р ³ міх-Е	91.9 ± 0.3	89.5 ± 0.5	88.2 ± 0.4	84.7 ± 0.5	$80.2 {\pm} 0.9$	83.7 ± 0.7
DF-C	89.6 ± 1.8	87.4 ± 2.4	87.2 ± 0.8	84.7 ± 1.1	80.2 ± 3.0	$82.7{\pm}2.6$
DF-C+mixup	91.6 ± 0.3	88.3 ± 1.2	87.7 ± 1.1	81.3 ± 3.6	79.9 ± 3.1	81.6 ± 2.8
Р ³ міх-С	$92.0 {\pm} 0.4$	89.4 \pm 0.3	$\pmb{88.7 \!\pm\! 0.4}$	$\textbf{87.9} {\pm} \textbf{0.5}$	$80.7 {\pm} 0.7$	84.1 \pm 0.3

Who Is Your Right Mixup Partner in Positive and Unlabeled Learning?

Thank you!

Changchun Li changchunli93@gmail.com