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Variational AutoEncoder: A quick review

Generative Model

p(z,z) =p(z) X p(z | 2)
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Variational AutoEncoder: A quick review

v'Introduce approximate posterior g(z | x):

q(z | x)
q(z | x)

logp(x) = log[ p(x,z)dz = log [ p(x,z)dz

v Apply Jensen’s inequality:

p(2)p(x|z)
q(z | x)

logp(x) = jq(z | x ) log dz = Eg(zix)llogp(x 1 z)] = KL(q(z | x) 1l p(2))



Variational AutoEncoder:

A quick review

* Approximate the exact
posterior.

* Obtain a lower bound of
the marginal likelihood.

Inference Model

T

logp(x) > Eq(z)z)[logp(z | 2)] — KL(q(z | z) || p(2))



Variational AutoEncoder:
A quick review

 Jointly train the inference
and generative model.

Variational AutoEncoder

Inference Model

Generative Model
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Hierarchical VAEs

The latent variables are generated in blocks. Each block is generated by a layer in a hierarchy.

Variational Layer [
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Prior
p(zl)

I Hierarchical VAEs

e Stack multiple layers of
latent variables.
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I Hierarchical VAEs p(z2 | 1)

e Stack multiple layers of
latent variables.
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: : Prior
Hierarchical VAEs p(z2 | 21)

e Stack multiple layers of Prior

latent variables. p(z3 | 2<3)
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I Hierarchical VAEs

* The conditional likelihood
at the end receives
context and latent
samples from the last
layer in the hierarchy and
generates image x.
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Bidirectional Inference

* Inference is a two-stage process.
* Phase 1: Bottom-up pass.
* Phase 2: Top-down pass.
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I Bidirectional Inference

e During the top-down pass,
a stochastic context clp IS
computed from the latent
sample z;_;and stochastic
context cf_l of the
previous layer.
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I Bidirectional Inference

P T (2 D L)

. cg IS @ constant.

. Tlp is a block of ResNet
cells.
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I Bidirectional Inference

. cf carries information from

earlier latent samples z_;.

* Dueto clp, a strongly
connected factorization of
the prior is achieved:

p(z) = p(z) X[Ip(z | z<;).
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Bidirectional Inference

* This context clpfeeds the
network that is
responsible for generating

the parameters of the
prior.
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Bidirectional Inference

* The deterministic and the
stochastic features are
merged to give the

context clqof the posterior.
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Bidirectional Inference

* Dueto clp, a strongly

connected factorization of
the posterior is achieved:

q(z | x)
= q(z 10 x| [atz 1222
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Problem: Locality in Deep VAEs

* During inference, a variational layer is connected only with the
immediately adjacent variational layer in the architecture.



‘ Variational Layer 1 ‘

Problem: Locality in
Deep VAEs

Variational Layer 2
* During the bottom-up T

pass, a layer is connected

only with the layer below
‘ Variational Layer L ‘

in the hierarchy.




‘ Variational Layer 1 ‘

Problem: Locality in
Deep VAEs

e During the top-down pass, :
a layer is connected only |
with the layer above in
the hierarchy.
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Problem: Locality in Deep VAEs

* Current hierarchies may overlook long-range latent or deterministic
features.



Problem: Locality in Deep VAEs

* Current hierarchies may overlook long-range latent or deterministic
features.

* The conditional dependency between z; and z_.;_1, in practice may
not be respected.

» For L = 30 layers, z3, is far away from z, z, ...



Problem: Locality in Deep VAEs

* Current hierarchies may overlook long-range latent or deterministic
features.

* The conditional dependency between z; and z_.;_1, in practice may
not be respected.

» For L = 30 layers, z3, is far away from z, z, ...
* The factorizations may no longer hold in practice:

"p(2) = p(z1) X [Ip(z | zo;).

"q(z1x) =q(z | x) x]lq(z | x,2<; ).



Problem: Locality in Deep VAEs

* Current hierarchies may overlook long-range latent or deterministic
features.

* This problem is usually compensated by adding more layers!



Problem: Locality in

Deep VAEs Table 1: —log p(x) for

varying depth L (bits/dim).

Depth (L) bits/dim | A(-)%

e Performance of NVAE on

CIFAR-10 for a different 2 3.50 —

number of layers. 4 3.26 —6.8
* The predictive gains 8 3.06 —6.1

diminish as depth 16 7 96 _3.9

INCreases. 30 7 9] 1.7




|dea: Strongly Connected Layers

* We enforce couplings between layers.



|dea: Strongly Connected Layers

* We enforce couplings between layers.

* We allow the layer to dynamically decide which parts of the contexts
are critical to inference.
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Variational Layer 2

* During the bottom-up
pass, a layer is connected T

the hierarchy.

with all layers below in
Variational Layer L
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Depth-Wise Attention

* The technical tool that let us realize the strong couplings between
layers.



Depth-Wise Attention

* Problem: We must be
able to handle long
sequences of large 3D
context tensors.
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Depth-Wise Attention

e Solution: Handle H X W
pixel sequences of
C— dimensional features
independently.
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The sequence of contexts for
each pixel is processed
independently from the rest.
1/5
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Each context is represented
by a key of lower dimension.
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S
Q) The keys are queried by
feature s. 3/5




exp(s” km)

U = > rexp(stk,,)

The attention score «;
captures how important is
context c;. 4/5




EI}.’)(ST ""C*m, )

¥m = = eap(sTk,,,) The final context is a linear
- - combination of the contexts
weighted by their attention

scores. 5/5

¢ = (1 X Cq + G2 X C2 -+ cee 4 O X




Attentive VAE

* Each layer attends to context provided by all previous layers when
forming its prior and posterior beliefs.



I Attentive VAE

* The layer generates

contexts c, keys k, and

queries s.
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I Attentive VAE

* Initially, we let the layer
rely only on the local
context cf via a residual
connection.
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Spatially Non-Local ResNet cells

* We still need to take advantage of latent information that is far away
in the spatial domain.

* This occurs at a second stage by interleaving non-local blocks.



Spatially Non-Local
ResNet cells

Wang, Xiaolong, et al. "Non-local
neural networks." Proceedings of the
IEEE conference on computer vision
and pattern recognition. 2018.
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Spatially Non-Local
ResNet cells

* Non-local operations are
interleaved with
convolutions to capture
inter-pixel long-range
interactions in the same
layer.
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Taming the KL term

Residual variational distributions for training stability.

p(z | z¢;) = N (u(z<)), 0(z4))

q(z; 1 x,z<;) = N (u(x,z<;) + u(z<)), o(x,z<;)o(z<;))

Vahdat, Arash, and Jan Kautz. "NVAE: A deep hierarchical variational
autoencoder." Advances in Neural Information Processing Systems 33 (2020).



Taming the KL term

KL annealing for mitigating posterior collapse.

E,logp(x | 2)] — BDkr(q(z | x) || p(2)), Bo<B <1, By <1,

Senderby, Casper Kaae, Tapani Raiko, Lars Maalge, Séren Kaae Sgnderby,
and Ole Winther. "Ladder variational autoencoders." Advances in neural
information processing systems 29 (2016).



Experiments

Better predictive performance with fewer layers.

Table 3: CIFAR-10 (Krizhevsky et al., 2009) performance on the test set. The marginal log-
likelihood is estimated with 100 importance samples. A shallower Attentive VAE outperforms all
state-of-the-art VAEs with or without autoregressive components. Attentive VAE performs on par
with fully autoregressive generative models. However, it permits fast sampling that requires a single
network evaluation per sample as opposed to D, where D the dimension of the data distribution.

Model VAE Depth (L) Autoregressive Decoder —logp{x) < (bits/dim) |
Attentive VAE (ours) trained for 400 epochs vy 16 X 2.82
Attentive VAE (ours) trained for 500 epochs 4 16 X 2.81
Attentive VAE (ours) trained for 900 epochs v LG X 2.79
Very Deep VAE (Childf2020) v 45 X 2.87
NVAE ( Vahdat & KautzJ2020] v 30 X 2.91
BIVA (Maalge et al.|Z01Y] v/ 15 X 3.08
IAF-VAE (Kingma et al.J2016] v/ 12 X 3.11
4-VAE (Razavi et al | 2U19a v v 2.83
PixelVAE++ (Sadeghi et al.} v v 2.90
Lossy VAE {'gml v/ v/ 2.95
MAE (Ma et al.. v v 2.95
PixelCNN++ X v 292
PixelSNAIL X " 285
Image Transtormer X v 2.90
Sparse Transformer X v 2.80




Experiments

Fewer layers decrease training and inference time.

Table 4: Comparison of the computational requirements for training deep state-of-the-art VAE
models. All models are trained on 32GB V100 GPUs. The additional cost for computing the
attention scores is compensated by the smaller number of stochastic layers in the hierarchy without
sacrificing the generative capacity of the model, see Table

Model batch size / GPU # GPUs Training Time Total GPU hours
Attentive VAE (ours), 400 epochs 32 4 68 hours 272
Attentive VAE (ours), 500 epochs 32 4 84 hours 336
Attentive VAE (ours), 900 epochs 32 4 152 hours 608
NVAE 32 8 55 hours 440
Very Deep VAE 32 2 6 days 288




Experiments

Question: Where did this improvement come from?




Experiments

Question: Where did this improvement come from?

Answer: Attention leads to better utilization of the latent space.
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Spatial Attention Patterns

The spatial attention patterns are sparse and highly structured.
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Spatial Attention Patterns
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Generative
Attention
Patterns
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Inference
Attention
Patterns
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Discussion

* Depth-wise attention on general ResNet architectures for different
tasks.

e Efficient attention approximations specific to variational inference.
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