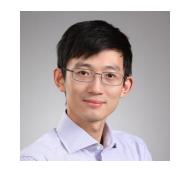
Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution

Ananya Kumar

Aditi Raghunathan

Robbie Jones



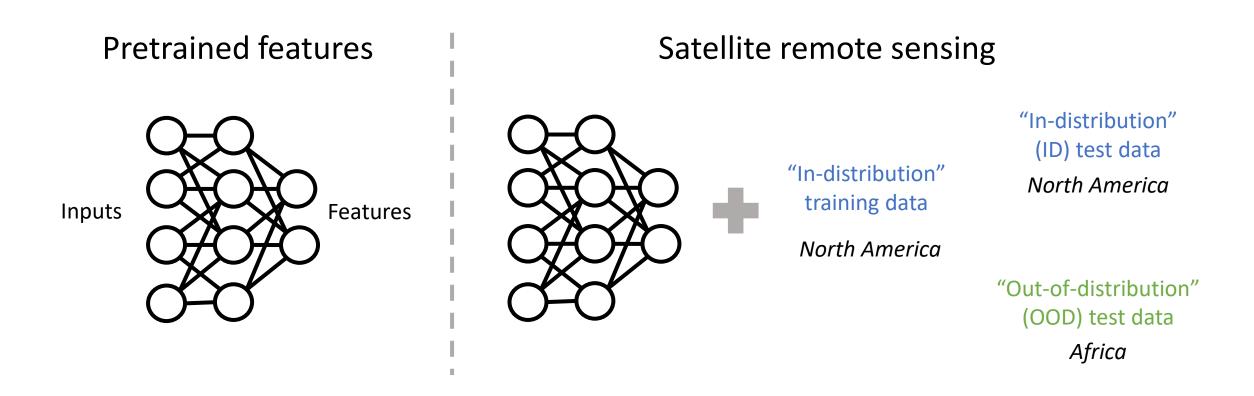
Tengyu Ma

Percy Liang

Motivation: how to use pretrained models?

- Pretrained models like CLIP, SimCLR, BERT, are very useful
- Lots of research on improving these models
- This work: how should we adapt these models properly?

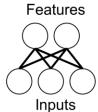
Setting: Pretrain-Transfer-Test



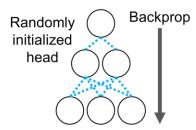
Better than no pretraining (Hendrycks et al 2019, Chen et al 2020, Xie et al 2021, Miller et al 2021)

Pretraining

Pretraining



Fine-tuning



Features Randomly initialized head Frozen Features Randomly initialized head Frozen Features Randomly initialized head Frozen Features

Inputs

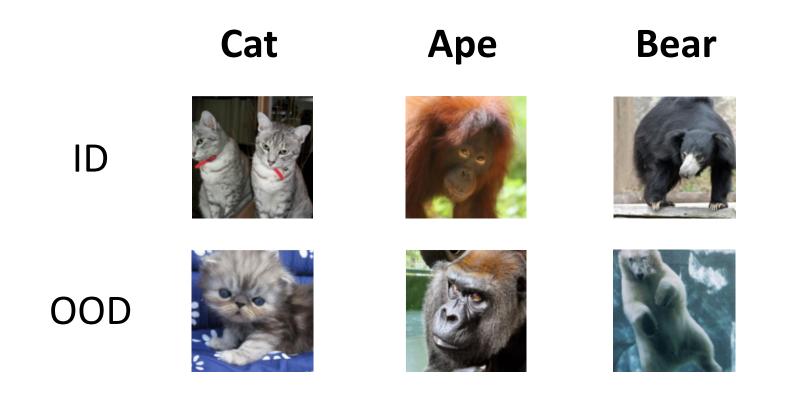
Features Randomly initialized head Randomly initialized head

Which method does better?

Pop Quiz: Background, Living-17

- Breeds Living-17: task is to classify image into animal such as bear (ID contains black bears, sloth bears; OOD has brown bears, polar bears)
- Pretrained model: MoCo-V2, seen *unlabeled* ImageNet images (including various types of bears)

Pop Quiz: Background, Living-17



Living-17	ID	OOD
Scratch	92.4%	58.2%
Linear Probing	96.5%	?
Fine-Tuning	97.1%	

(a) LP < Scratch

(b) Scratch < LP

Living-17	ID	OOD
Scratch	92.4%	58.2%
Linear Probing	96.5%	82.2%
Fine-Tuning	97.1%	

(a) LP < Scratch (b) Scratch < LP

Living-17	ID	OOD
Scratch	92.4%	58.2%
Linear Probing	96.5%	82.2%
Fine-Tuning	97.1%	?

(a) FT < Scratch (b) Scratch < FT < LP (c) LP < FT

Living-17	ID	OOD
Scratch	92.4%	58.2%
Linear Probing	96.5%	82.2%
Fine-Tuning	97.1%	77.7%

(a) FT < Scratch (b) Scratch < FT < LP (c) LP < FT

Pop Quiz: Background, CIFAR-10.1

• ID = CIFAR-10, OOD = CIFAR-10.1: Dataset collected using a similar protocol to CIFAR-10, "a minute distributional shift"

	Dog	Plane	Truck
ID	1		
OOD	法		

Pop Quiz: CIFAR-10.1

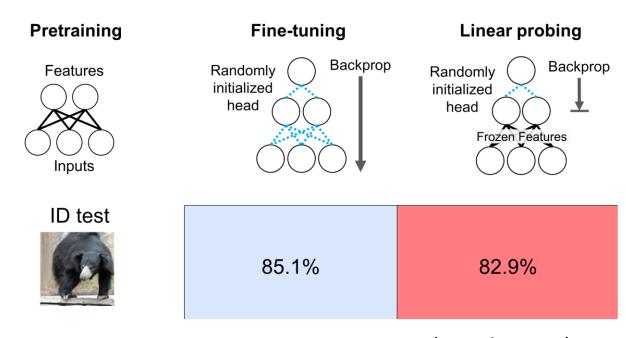
CIFAR-10.1	ID	OOD
Linear Probing	91.8%	82.7%
Fine-Tuning	97.3%	?

Pop Quiz: CIFAR-10.1

CIFAR-10.1	ID	OOD
Linear Probing	91.8%	82.7%
Fine-Tuning	97.3%	92.3%

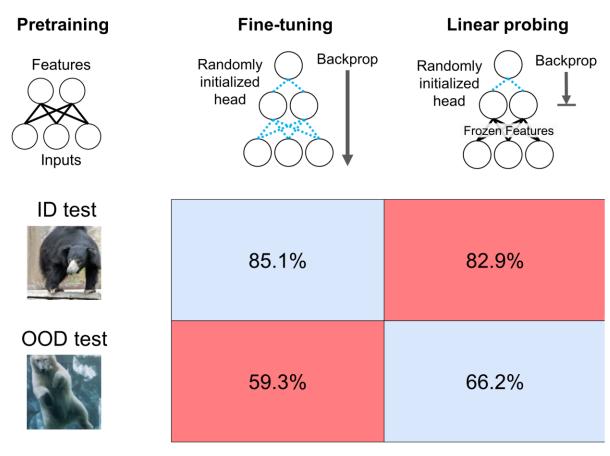
Datasets

- CIFAR-10 \rightarrow STL, CIFAR-10.1
- BREEDS Living-17 and BREEDS Entity-30
- DomainNet
- Functional Map of the World
- ImageNet → ImageNet-R, ImageNet-A, ImageNet-V2, ImageNet-Sketch



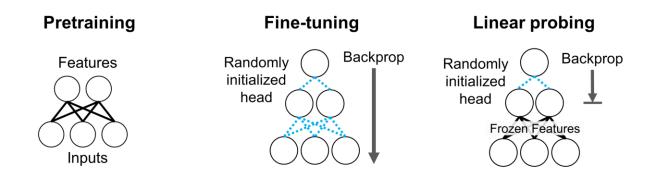
Average accuracies (7 ID datasets)

Common wisdom is fine-tuning works better than linear probing



Fine-tuning worse on 8/10 OOD datasets

Average accuracies (10 datasets)



Fine-tuning can often do worse out-of-distribution

especially when the pretrained features are high quality and distribution shifts are large

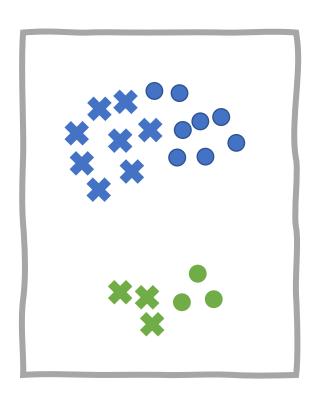
Outline

- 1. Fine-tuning can do worse than linear-probing OOD
- 2. Why fine-tuning can underperform OOD
- 3. Simple change to fine-tuning: improved accuracy on 10 datasets

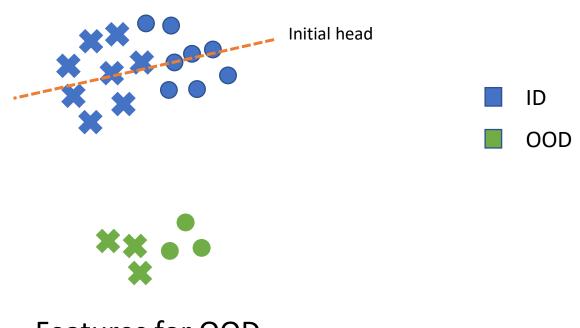
Outline

- 1. Fine-tuning can do worse than linear-probing OOD
- 2. Why fine-tuning can underperform OOD
- 3. Simple change to fine-tuning: improved accuracy on 10 datasets

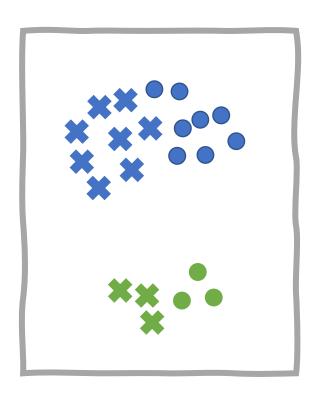
Pretrained Features



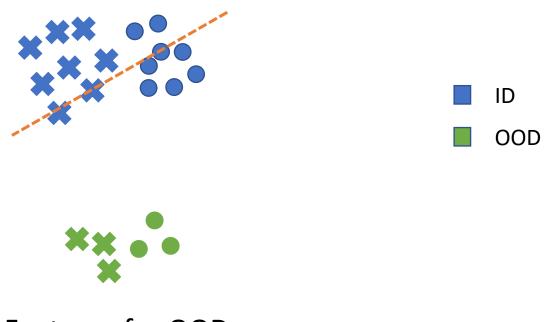
Fine-tuning: features for ID examples change in sync with the linear head



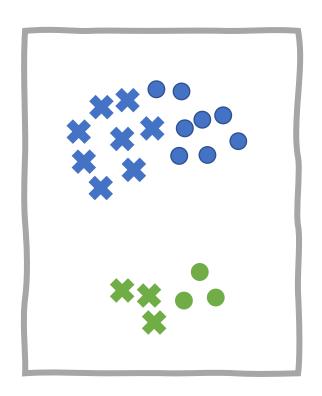
Pretrained Features



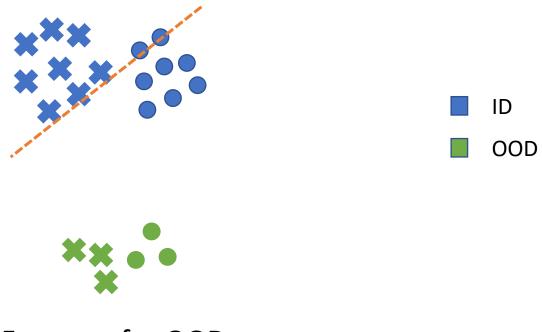
Fine-tuning: features for ID examples change in sync with the linear head



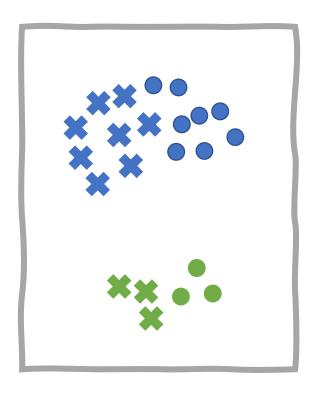
Pretrained Features



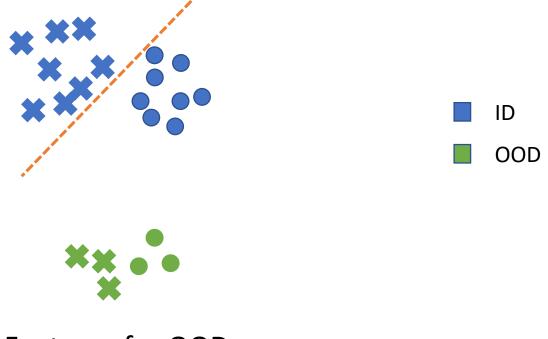
Fine-tuning: features for ID examples change in sync with the linear head



Pretrained Features

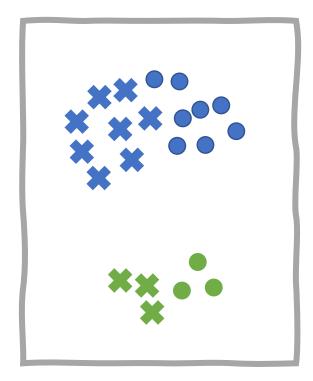


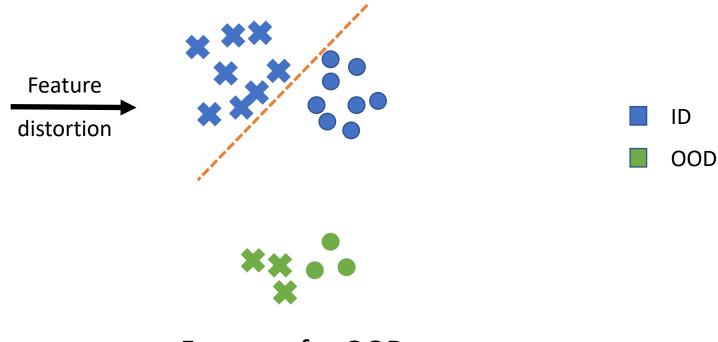
Fine-tuning: features for ID examples change in sync with the linear head



Pretrained Features

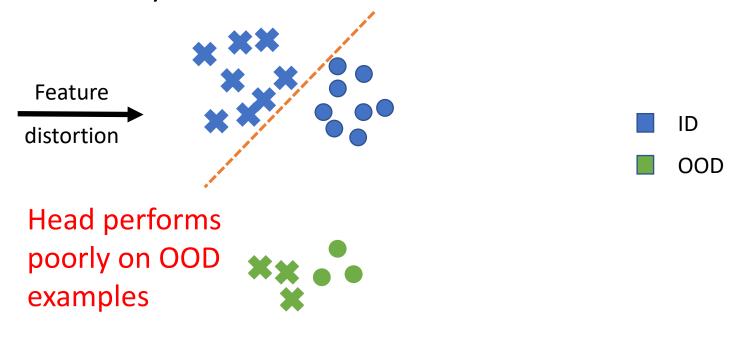
Fine-tuning: features for ID examples change in sync with the linear head





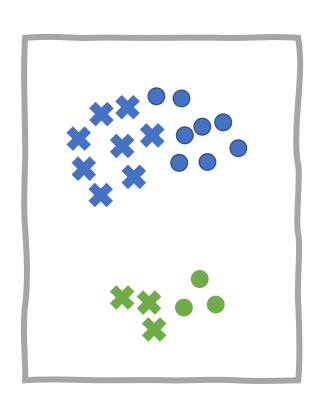
Pretrained Features

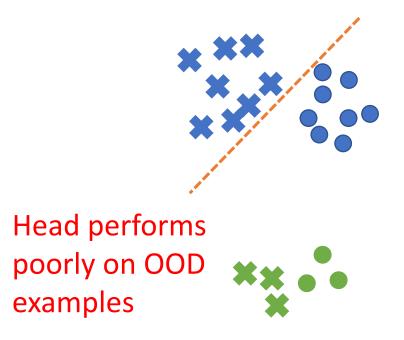
Fine-tuning: features for ID examples change in sync with the linear head

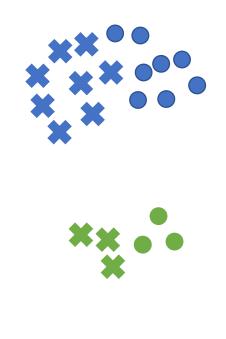


Pretrained Features

Fine-tuning

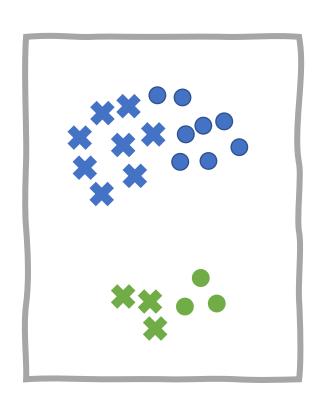


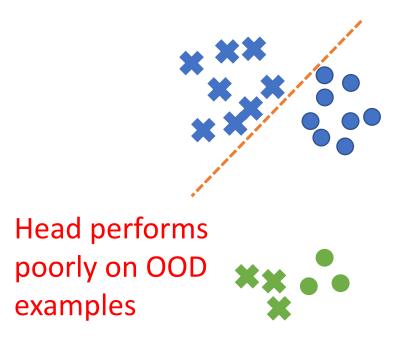


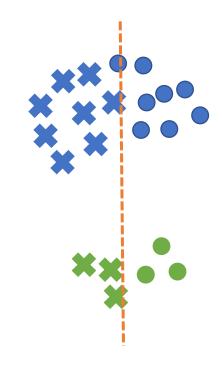


Pretrained Features

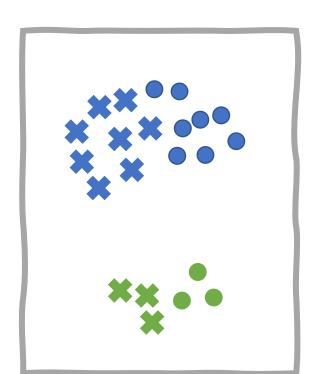
Fine-tuning



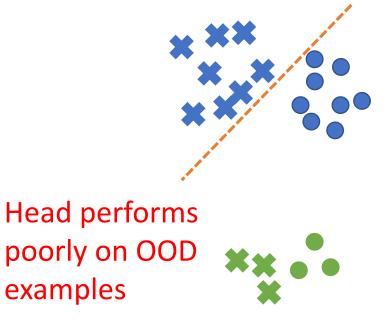


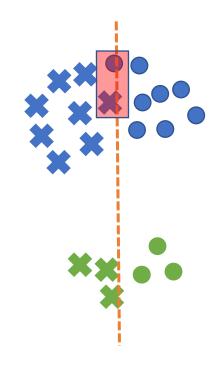


Pretrained Features



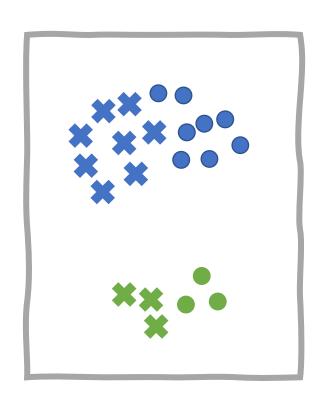
Fine-tuning

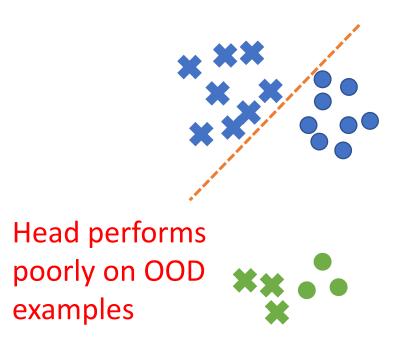


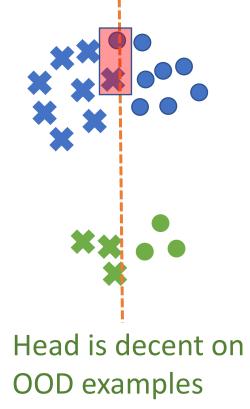


Pretrained Features

Fine-tuning







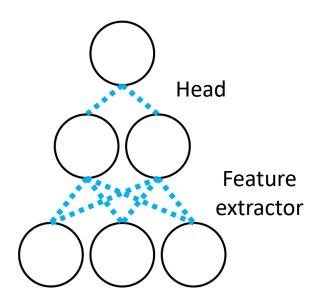
Feature Distortion Theory (Overview)

- Prior work: linear probing. Fine-tuning: challenging to analyze
- Two-layer linear networks: we prove that fine-tuning distorts features

Theorem 3.3 (Informal)

 $L_{\text{ood}}(\text{fine-tuning}) \ge f(\epsilon, \sigma)$

- σ : "amount" of distribution shift
- ϵ : "quality" of pretrained features

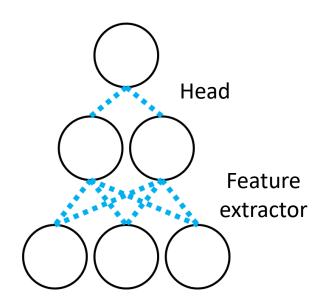


Feature Distortion Theory (Overview)

Theorem 3.5 (Informal)

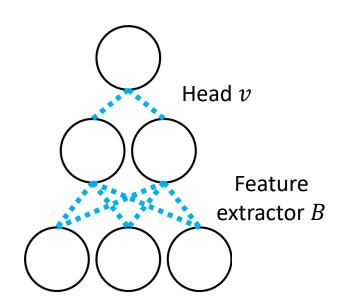
$$\frac{L_{\rm ood}({\rm linear-probing})}{L_{\rm ood}({\rm fine-tuning})} \xrightarrow{p} 0, \quad \text{as } B_0 \to B_* \text{ (up to rotational symmetries)}$$

- B_0 : pretrained feature extractor, B_* : optimal feature extractor
- OOD: fine-tuning worse than linear probing
 - If pretrained features good, OOD shift large
 - Throughout the process of fine-tuning
- ID: fine-tuning better than linear probing



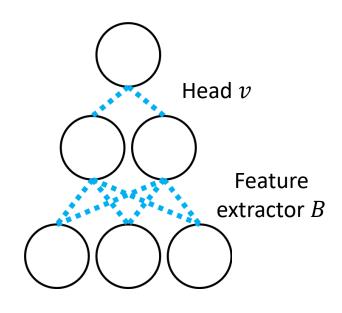
Feature Distortion Theory (Details)

- Two-layer linear networks
 - High dimensional input: *x*
 - Lower dimensional features: B_*x
 - Ground truth outputs: $y = v_*^T B_* x$ (both ID and OOD)
- From prior work on pretraining, suppose we have B_0 close to B_* (e.g., in operator norm)
- P_{id} and P_{ood} define different distributions on x



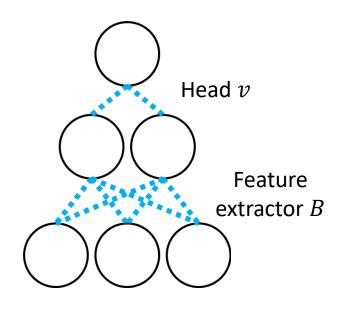
Feature Distortion Theory (Details)

- $y = v_*^T B_* x$ (both ID and OOD)
- Have B_0 close to B_* (from pretraining)
- Distributions:
 - P_{id} supported on subspace S
 - P_{ood} includes directions outside of S (unseen directions)
- Overparameterized setting
 - Both fine-tuning and training from scratch fit train loss, but have different test losses
- ullet FT updates v and B, LP only updates head v



Feature Distortion Theory (Details)

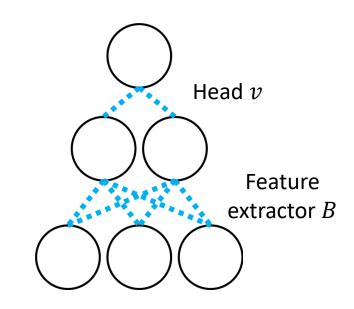
- $y = v_*^T B_* x$ (both ID and OOD)
- Have B_0 close to B_* (from pretraining)
- Squared loss: $L(v, B) = E_{x,y \sim P_{id}} [(y v^T B x)^2]$
- Algorithms
 - LP initializes random head v_0 , optimizes $\min_{v} L(v, B)$
 - FT initializes random head v_0 , optimizes $\min_{v,B} L(v,B)$
 - LP-FT optimizes $\min_{v,B} L(v,B)$ but initializing v from LP

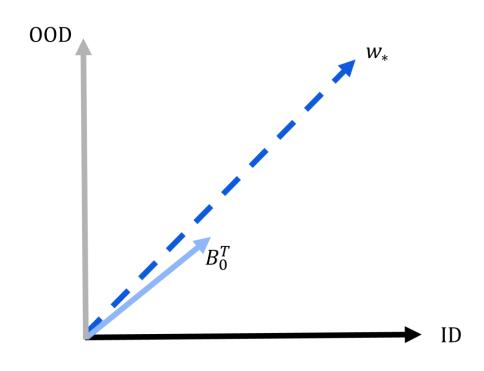


Feature Distortion Theory (Details)

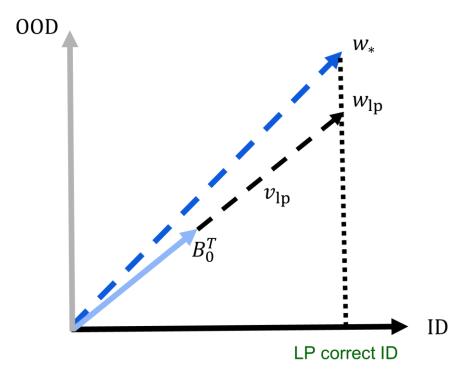
Challenges

- Prior work studies linear probing (fitting linear head on features)
- Fine-tuning is non-convex, trajectory is complicated and has no closed form
- Tool: leverage invariants that hold throughout process of fine-tuning

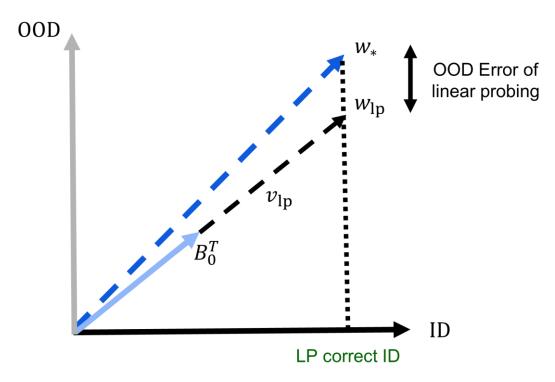




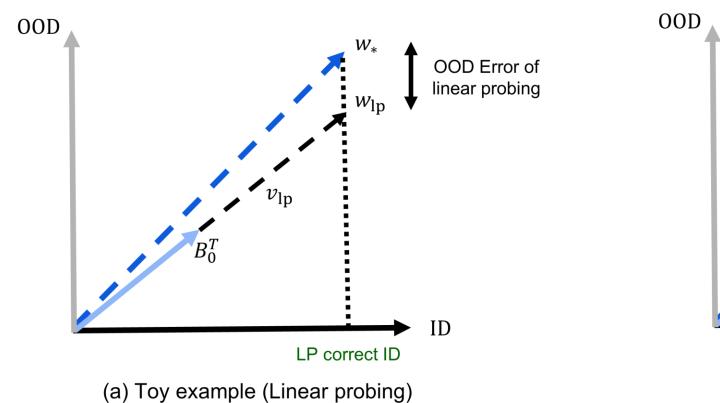
(a) Toy example (Linear probing)

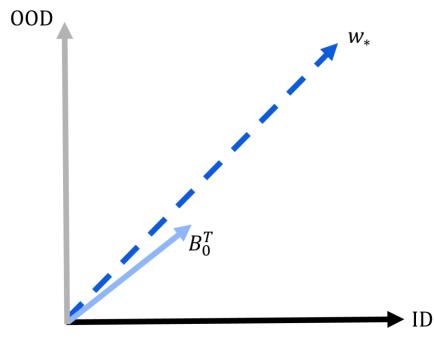


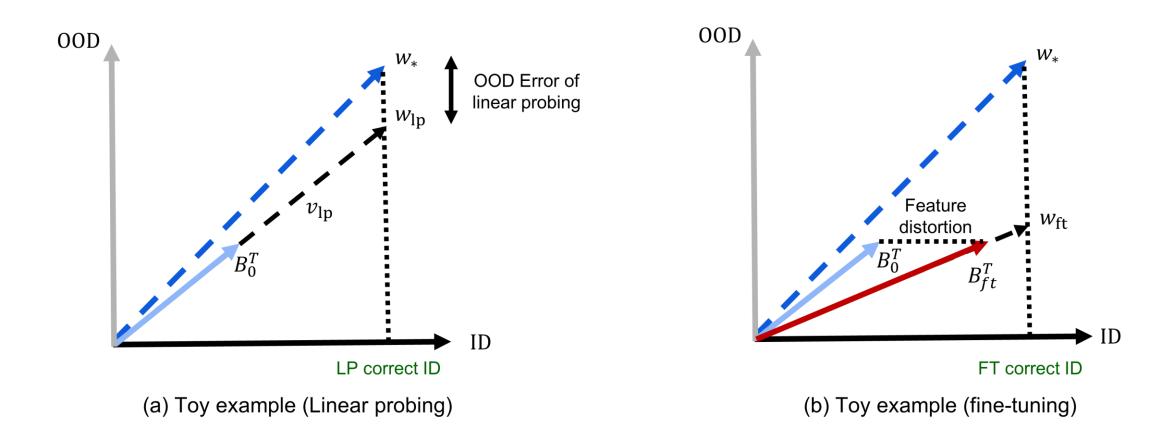
(a) Toy example (Linear probing)

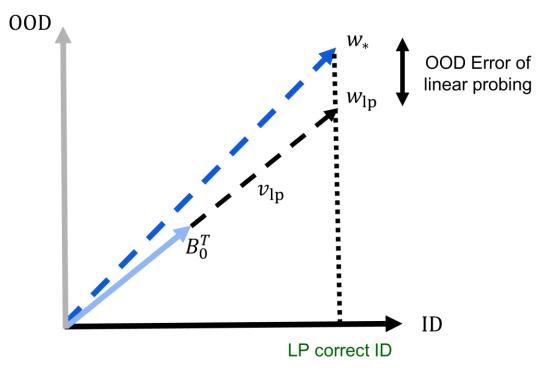


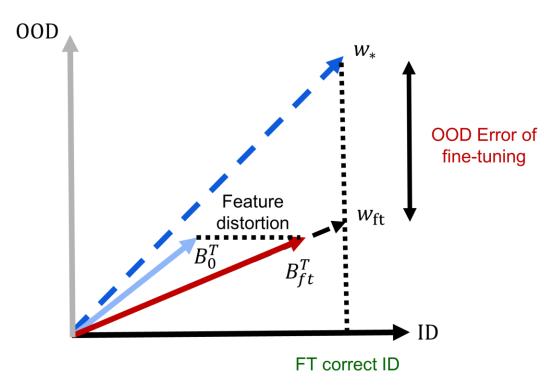
(a) Toy example (Linear probing)











(b) Toy example (fine-tuning)

How to learn pretrained features

- Learn good features for both ID and OOD
- Auxiliary information
 - In-N-Out: Pre-Training and Self-Training using Auxiliary Information for Out-of-Distribution Robustness. SMX*, **AK***, RJ*, FK, TM, PL. ICLR 2020.
- Contrastive learning
 - Connect, Not Collapse: Explaining Contrastive Learning for Unsupervised
 Domain Adaptation. KS*, RJ*, AK*, SMX*, JZH, TM, PL. Preprint.

Outline

- 1. Fine-tuning can do worse than linear-probing OOD
- 2. Why fine-tuning can underperform OOD
- 3. Simple change to fine-tuning: improved accuracy on 10 datasets

Improving fine-tuning

- Fine-tuning works better on ID test; linear probing works better on OOD test
- Reason: start with random head, changes a lot \rightarrow features get distorted

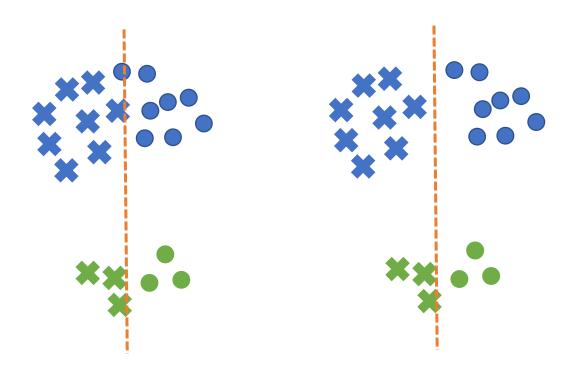
Can we refine features without distorting them too much?

LP-FT

Step 1: Linear probe

Step 2: Fine-tune

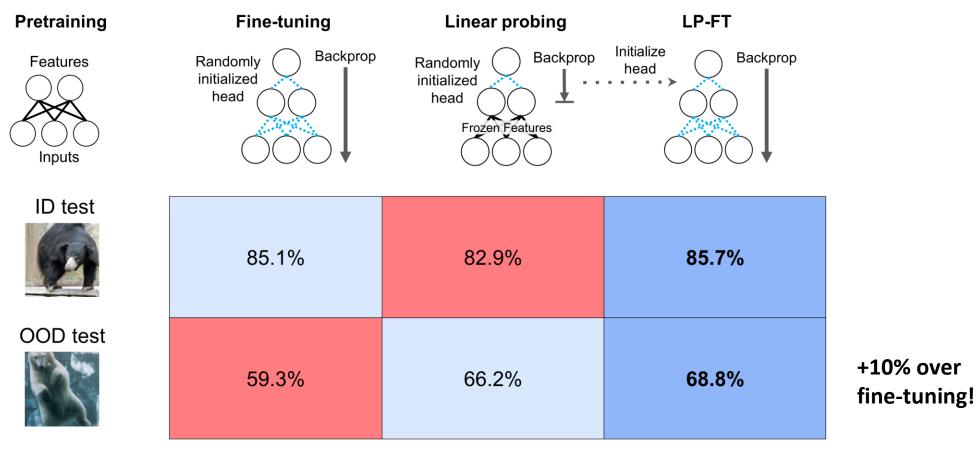
Prove this intuition in a simple setting
(Levine et al 2016, Kanavati & Tsuneki, 2021)



Improving fine-tuning: experiments

- Datasets: standard datasets like CIFAR, ImageNet, DomainNet,
 BREEDS, satellite remote sensing
- Models: conv nets (ResNet-50) and Vision Transformers (ViT-B/16)
- Protocols:
 - Rigorous protocol for tuning hyperparameters on ID validation data
 - Ensure that LP-FT and fine-tuning use the same computation

Improving fine-tuning



Average accuracies (10 datasets)

In-Distribution Accuracies

	CIFAR-10	Ent-30	Liv-17	DomainNet	FMoW	ImageNet	Average
FT	97.3 (0.2)	93.6 (0.2)	97.1 (0.2)	84.5 (0.6)	56.5 (0.3)	81.7 (-)	85.1
LP	91.8 (0.0)	90.6 (0.2)	96.5 (0.2)	89.4 (0.1)	49.1 (0.0)	79.7 (-)	82.9
LP-FT	97.5 (0.1)	93.7 (0.1)	97.8 (0.2)	91.6 (0.0)	51.8 (0.2)	81.7 (-)	85.7

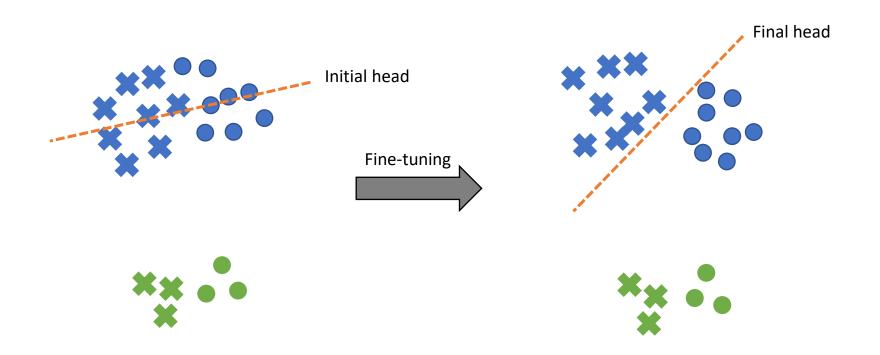
Out-of-Distribution Accuracies

	STL	CIFAR-10.1	Ent-30	Liv-17	DomainNet	FMoW
FT	82.4 (0.4)	92.3 (0.4)	60.7 (0.2)	77.8 (0.7)	55.5 (2.2)	32.0 (3.5)
LP	85.1 (0.2)	82.7 (0.2)	63.2 (1.3)	82.2 (0.2)	79.7 (0.6)	36.6 (0.0)
LP-FT	90.7 (0.3)	93.5 (0.1)	62.3 (0.9)	82.6 (0.3)	80.7 (0.9)	36.8 (1.3)

	ImNetV2	ImNet-R	ImNet-Sk	ImNet-A	Average
FT	71.5 (-)	52.4 (-)	40.5 (-)	27.8 (-)	59.3
LP	69.7 (-)	70.6 (-)	46.4 (-)	45.7 (-)	66.2
LP-FT	71.6 (-)	72.9 (-)	48.4 (-)	49.1 (-)	68.9

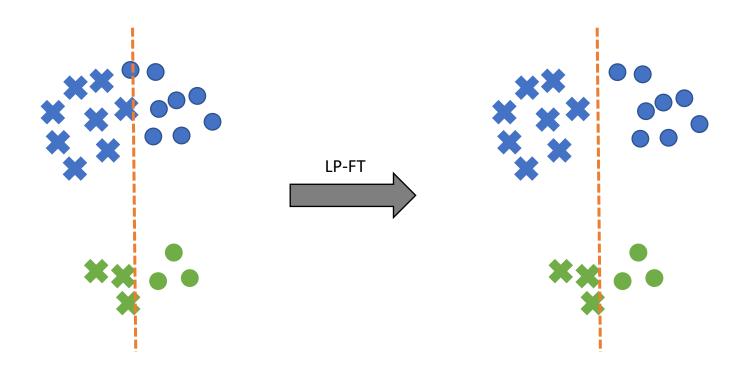
Does feature distortion happen?

ID features change more than OOD features



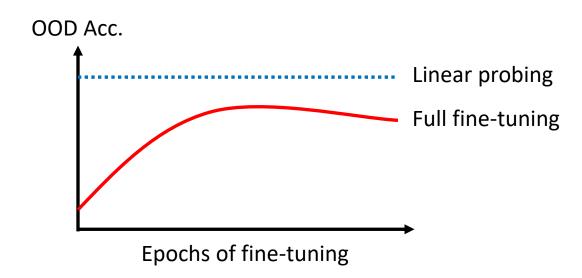
Does feature distortion happen?

Features change orders of magnitude less with LP-FT



Does feature distortion happen?

Early stopping does not solve the problem with fine-tuning



Important conditions for LP vs. FT

- Theory says fine-tuning does worse than linear probing **if** features good, distribution shift large
- CIFAR-10.1, ImageNetV2: small shift, FT does better
- Use MoCo-V1 instead of MoCo-V2: worse features, FT does better

Discussion

- Pretrained models give large improvements in accuracy, but how we fine-tune them is key
- LP-FT is just a starting point
- What to do when linear probing not so good?

Related Work

- Lightweight fine-tuning
 - Can often improve OOD accuracy, we give one explanation
 - Increasingly important as pretrained feature quality improves
 - Adapter tuning, prefix tuning, composed fine-tuning
- Linear probing then fine-tuning
 - Sometimes used as a heuristic for ID, e.g. ULMFit
 - Just a starting point

Summary

- 1. Fine-tuning can do worse than linear-probing OOD
- 2. Why fine-tuning can underperform OOD
- 3. Simple change to fine-tuning: improved accuracy on 10 datasets
 - 1. Linear probe to learn good head initialization
 - 2. Fine-tune to refine features

Summary

- 1. Fine-tuning can do worse than linear-probing OOD
- 2. Why fine-tuning can underperform OOD
- 3. Simple change to fine-tuning: improved accuracy on 10 datasets
 - 1. Linear probe to learn good head initialization
 - 2. Fine-tune to refine features