

Auto-scaling Vision Transformers (ViTs) without Training

Wuyang Chen¹, Wei Huang², Xianzhi Du³, Xiaodan Song³, Zhangyang Wang¹, Denny Zhou³

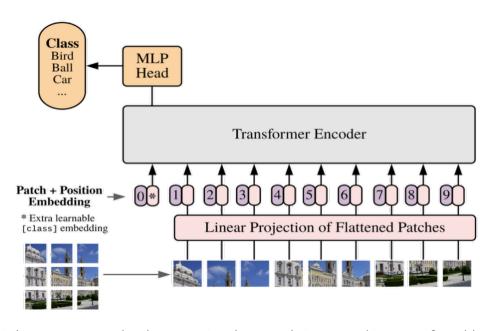
¹University of Texas, Austin

²University of Technology Sydney

³Google

How to Design & Scale-up ViTs in Principle?

- ViT (Vision Transformer): Tokens + Attentions + FFNs
- Principled designs?
 - Token size / FFN expansion ratio / #heads...
- Principled scaling rules?
 - More widths or more depths?
- Efficiency: find principles w/o heavy cost?



[1] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021.

As-ViT: Auto-scaling Vision Transformers

- Automated architecture design (no training!)
- Automated scaling-up of ViT (no training!)
 - Meet different constraints in one job.
- Efficient ViT training via progressive re-tokenization.
 - Saves both training FLOPs and time cost.
- State-of-the-art performance on ImageNet and COCO.

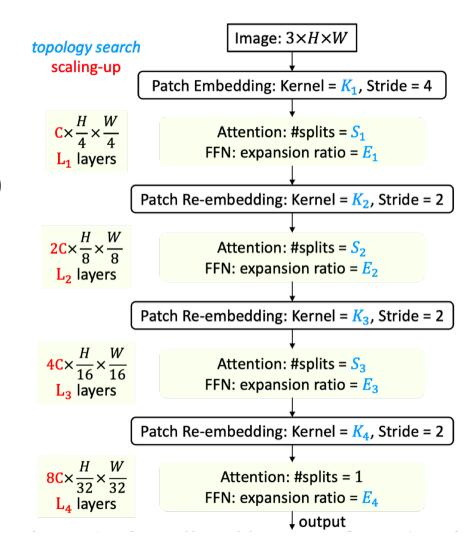
Topology & Scaling Space

Topology Search

- Token (patch) size?
- Attention Splits? (local vs. global attention)
- Channel expansion ratio?

Model Scaling

- Channel Dim for each layer?
- #Layers for each stage?



Training-free Topology Search via Generalized Complexity Measure of ViTs

- ViT is not a piece-wise linear function (GeLU, Self-attention).
- Measure the complexity of ViTs in a more general way. Input: $\mathbf{h}(\theta) = \sqrt{N} \left[\mathbf{u}^0 \cos(\theta) + \mathbf{u}^1 \sin(\theta) \right]$ ViT network as \mathcal{N} , its input-output Jacobian $\mathbf{v}(\theta) = \partial_{\theta} \mathcal{N}(\mathbf{h}(\theta))$ at the input θ , and $\mathbf{a}(\theta) = \partial_{\theta} \mathbf{v}(\theta)$
- 1. Curvature $\kappa = \int (\boldsymbol{v}(\theta) \cdot \boldsymbol{v}(\theta))^{-3/2} \sqrt{(\boldsymbol{v}(\theta) \cdot \boldsymbol{v}(\theta))(\boldsymbol{a}(\theta) \cdot \boldsymbol{a}(\theta)) (\boldsymbol{v}(\theta) \cdot \boldsymbol{a}(\theta))^2} d\theta$
- 2. Length Distortion $\mathcal{L}^E = \frac{\operatorname{length}(\mathcal{N}(\theta))}{\operatorname{length}(\theta)} = \int \sqrt{\|\boldsymbol{v}(\theta)\|_2} d\theta$
- 3. "Length Distortion + Curvature" $\mathcal{L}_{\kappa}^E = \int \sqrt{\|\partial_{\theta} \hat{\mathbf{v}}(\theta)\|_2} d\theta$ $\hat{\mathbf{v}}(\theta) = \mathbf{v}(\theta) / \sqrt{\mathbf{v}(\theta) \cdot \mathbf{v}(\theta)}$

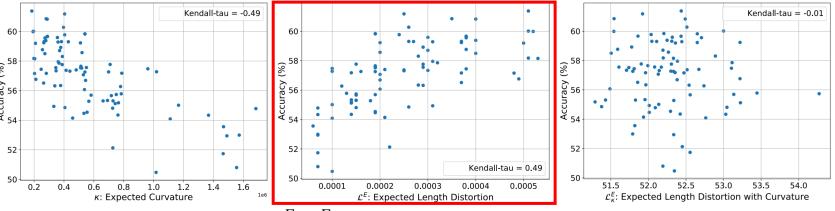


Table 2: Complexity Study. τ : Kendall-tau correlation. Time: per ViT topology on average on 1 V100 GPU.

Complexity	au	Time
κ	-0.49	38.3s
\mathcal{L}^E	0.49	12.8s
\mathcal{L}^E_{κ}	-0.01	48.2s

Figure 2: Correlations between $\kappa, \mathcal{L}^E, \mathcal{L}^E_{\kappa}$ and trained accuracies of ViT topologies from our search space.

Training-free Model Scaling

- Grow a seed topology into different sizes in a single run.
 - Progressively allocate width & depth.

```
Algorithm 2: Training-free Auto-scaling ViTs.

Input: seed As-ViT topology a_0, stop criterion (#parameters) P, t = 0, channel expansion ratio choices \mathcal{C} = \{1.05 \times, 1.1 \times, 1.15 \times, 1.2 \times\}, depth choices \mathcal{D} = \{(+1,0,0,0), (0,+1,0,0), (0,0,+1,0), (0,0,0,+1)\}.

while |a_t| \leq P do

Scale-up: a_{t,i} = a_t \leftarrow g_i. \Rightarrow which stage to deepen, to what extent to widen.

Calculate \mathcal{L}_i^E and \kappa_{\Theta,i} for a_{t,i}.

Get ranking of each scaling choice r_{\mathcal{L},i} by descendingly sort \mathcal{L}_i^E, i = 1, \dots, |\mathcal{C} \times \mathcal{D}|.

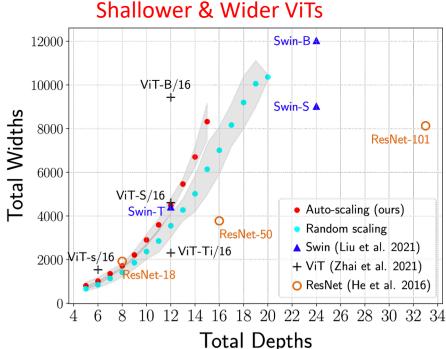
Get ranking of each scaling choice r_{\kappa_{\Theta,i}} by ascendingly sort \kappa_{\Theta,i}, i = 1, \dots, |\mathcal{C} \times \mathcal{D}|.

Ascendingly sort each scaling choice g_i by r_{\mathcal{L}^E,i} + r_{\kappa_{\Theta},i}.

Select the scaling choice g_i^* with the top (smallest) ranking.

a_{t+1} = a_t \leftarrow g_i^*.

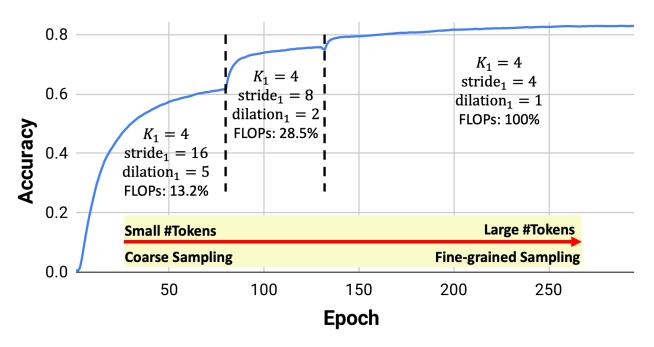
t = t + 1.
```



12 **return** Growed ViT architectures a_1, a_2, \dots, a_t .

Efficient ViT Training: Progressive Re-tokenization

- Different sampling granularities in the first linear projection layer.
- Update the number of tokens during training.
 - Large stride & dilation => small stride & no dilation.



ImageNet

Table 5: Image Classification on ImageNet-1k (224×224).

State-of-the-art Performance

COCO detection

Table 8: Two-stage object detection and instance segmentation results. We compare employing different backbones with Cascade Mask R-CNN on single model without test-time augmentation.

Backbone	Resolution	FLOPs	Params.	AP_{val}	AP _{val} ^{mask}
ResNeXt-101	400~800×1333	972 B	140 M	48.3	41.6
Swin-B (Liu et al., 2021)	$400 \sim 800 \times 1333$	982 B	145 M	51.9	45
SpineNet-190 (Du et al., 2020)	1536×1536	2076.8 B	176.2 M	52.2	46.1
As-ViT Large (ours)	1024×1024	1094.2 B	138.8 M	52.7	45.2

Method	Params.	FLOPs	Top-1
RegNetY-4GF (Radosavovic et al., 2020)	21.0 M	$4.0\mathrm{B}$	80.0%
ViT-S (Dosovitskiy et al., 2020)	22.1 M	$9.2\mathrm{B}$	81.2%
DeiT-S (Touvron et al., 2020)	22.0 M	$4.6\mathrm{B}$	79.8%
T2T-ViT-14 (Yuan et al., 2021b)	21.5 M	6.1 B	81.7%
TNT-S (Han et al., 2021)	23.8 M	$5.2\mathrm{B}$	81.5%
PVT-Small (Wang et al., 2021)	24.5 M	$3.8\mathrm{B}$	79.8%
CaiT XS-24 (Touvron et al., 2021)	26.6 M	$5.4\mathrm{B}$	81.8%
DeepVit-S (Zhou et al., 2021)	$27 \mathrm{M}$	$6.2\mathrm{B}$	82.3%
ConViT-S (d'Ascoli et al., 2021)	$27\mathrm{M}$	$5.4\mathrm{B}$	81.3%
CvT-13 (Wu et al., 2021)	$20\mathrm{M}$	4.5 B	81.6%
CvT-21 (Wu et al., 2021)	$32 \mathrm{M}$	7.1 B	82.5%
Swin-T (Liu et al., 2021)	29.0 M	$4.5\mathrm{B}$	81.3%
BossNet-T0 (Li et al., 2021)	-	$3.4\mathrm{B}$	80.8%
AutoFormer-s (Chen et al., 2021c)	22.9 M	5.1 B	81.7%
GLiT-Small (Chen et al., 2021a)	24.6 M	4.4 B	80.5%
As-ViT Small (ours)	29.0 M	$5.3\mathrm{B}$	81.2%
RegNetY-8GF (Radosavovic et al., 2020)	39.0 M	$8.0\mathrm{B}$	81.7%
T2T-ViT-19 (Yuan et al., 2021b)	39.2 M	$9.8\mathrm{B}$	82.2%
CaiT S-24 (Touvron et al., 2021)	46.9 M	$9.4\mathrm{B}$	82.7%
ConViT-S+ (d'Ascoli et al., 2021)	$48 \mathrm{M}$	10 B	82.2%
ViT-S/16 (Dosovitskiy et al., 2020)	48.6 M	$20.2\mathrm{B}$	78.1%
Swin-S (Liu et al., 2021)	50.0 M	$8.7\mathrm{B}$	83.0%
DeepViT-L (Zhou et al., 2021)	55 M	$12.5\mathrm{B}$	82.2%
PVT-Medium (Wang et al., 2021)	44.2 M	$6.7\mathrm{B}$	81.2%
PVT-Large (Wang et al., 2021)	61.4 M	$9.8\mathrm{B}$	81.7%
T2T-ViT-24 (Yuan et al., 2021b)	64.1 M	$15.0\mathrm{B}$	82.6%
TNT-B (Han et al., 2021)	65.6 M	$14.1\mathrm{B}$	82.8%
BossNet-T1 (Li et al., 2021)	-	7.9 B	82.2%
AutoFormer-b (Chen et al., 2021c)	$54\mathrm{M}$	$11~\mathrm{B}$	82.4%
ViT-ResNAS-t (Liao et al., 2021)	$41\mathrm{M}$	$1.8\mathrm{B}$	80.8%
ViT-ResNAS-s (Liao et al., 2021)	$65 \mathrm{M}$	$2.8\mathrm{B}$	81.4%
As-ViT Base (ours)	52.6 M	$8.9\mathrm{B}$	82.5%
RegNetY-16GF (Radosavovic et al., 2020)	84.0 M	$16.0\mathrm{B}$	82.9%
ViT-B/16 (Dosovitskiy et al., 2020)	86.0 M	$55.4\mathrm{B}$	77.9%
DeiT-B (Touvron et al., 2020)	86.0 M	$17.5\mathrm{B}$	81.8%
ConViT-B (d'Ascoli et al. 2021)	$86 \mathrm{M}$	17 B	82.4%
Swin-B (Liu et al., 2021)	88.0 M	$15.4\mathrm{B}$	83.3%
GLiT-Base (Chen et al., 2021a)	96.1 M	$17.0\mathrm{B}$	82.3%
ViT-ResNAS-m (Liao et al., 2021)	$97 \mathrm{M}$	$4.5\mathrm{B}$	82.4%
CaiT S-48 (Touvron et al., 2021)	89.5 M	$18.6\mathrm{B}$	83.5%
As-ViT Large (ours)	88.1 M	$22.6\mathrm{B}$	83.5%

Thank you!

