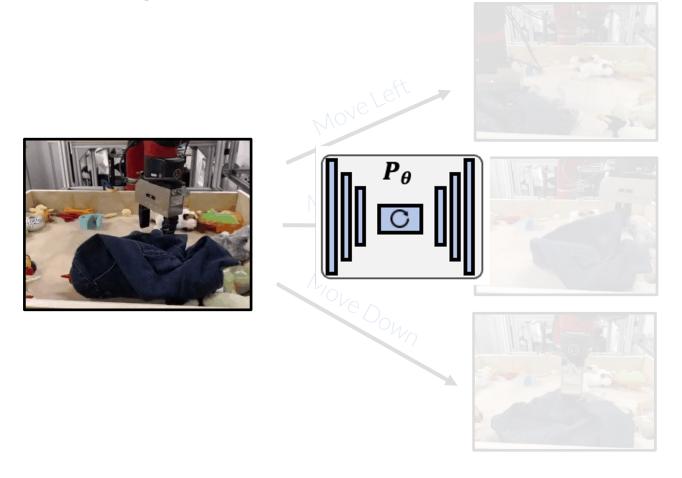
Know Thyself: Transferable Visual Control Policies Through Robot-Awareness

Edward S. Hu, Kun Huang, Oleh Rybkin, Dinesh Jayaraman

Dept. of CIS, GRASP Lab, University of Pennsylvania

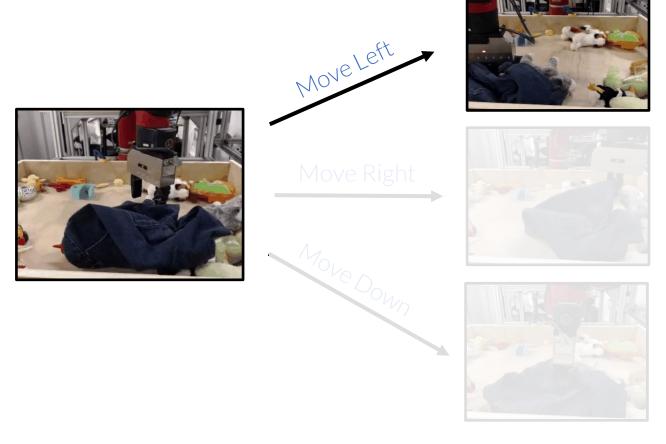
ICLR 2022

Learning Visual Dynamics Models for Model-based RL



Learn to predict future video frames given actions.

Learning Visual Dynamics Models for Model-based RL



Goal

Learn to predict future video frames given actions. Test time:

- 1. Sample actions and forecast their outcomes.
- 2. Select action with best forecasted outcome

Learning Visual Dynamics Models for Model-based RL

Learning visual dynamics models from experience to assist robotic control.

[Oh et al NIPS 2015, Finn et al NIPS 2016, Finn et al ICRA 2017, Ebert et al CORL 2017, ...]

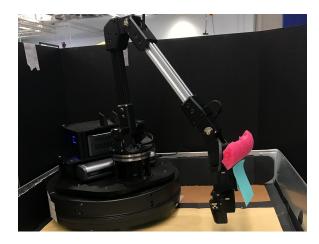
Learn to predict future video frames given actions. Test time:

- 1. Sample actions and forecast their effects.
- 2. Select action with best forecasted outcome

• Collecting robot data to train visual models is slow, up to a few days

Train on WidowX

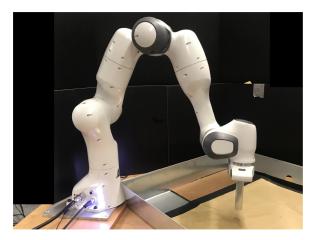
Test on Modified WidowX



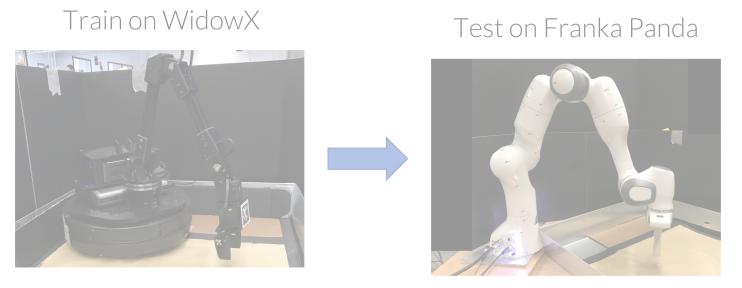
• Collecting robot data to train visual models is slow, up to a few days

Train on WidowX

Test on Franka Panda



• Collecting robot data to train visual models is slow, up to a few days



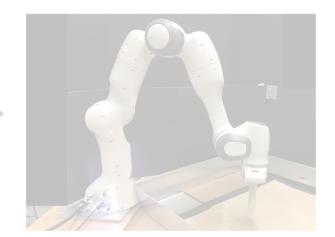
Poor Generalization

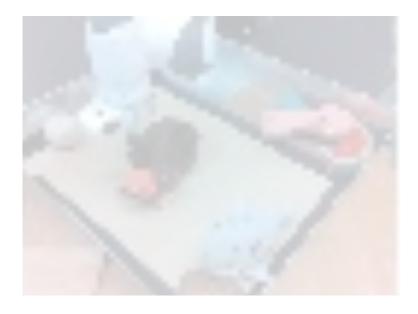
- Collecting robot data to train visual models is slow, up to a few days
- Do not transfer across robots out of the box, and must typically be trained separately for every new robot

Train on WidowX

Could we learn *transferable* visual dynamics models and controllers?

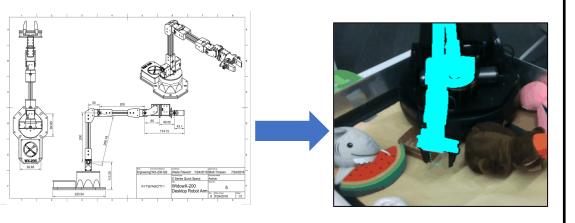
est on Franka Panda





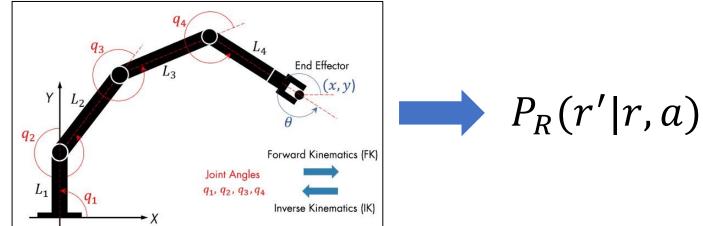
Using Robot Knowledge to Improve Transfer

Robot Segmentation



Easy when proprioception and camera calibration are available

Robot Dynamics

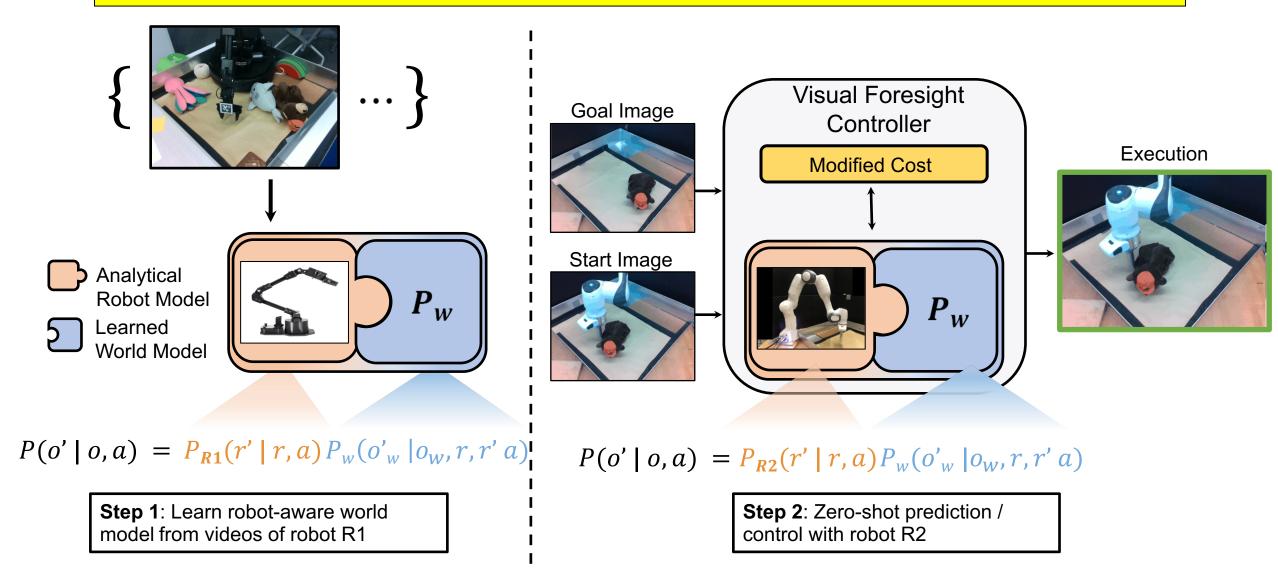


The analytical kinematics readily specify the robot transition model*

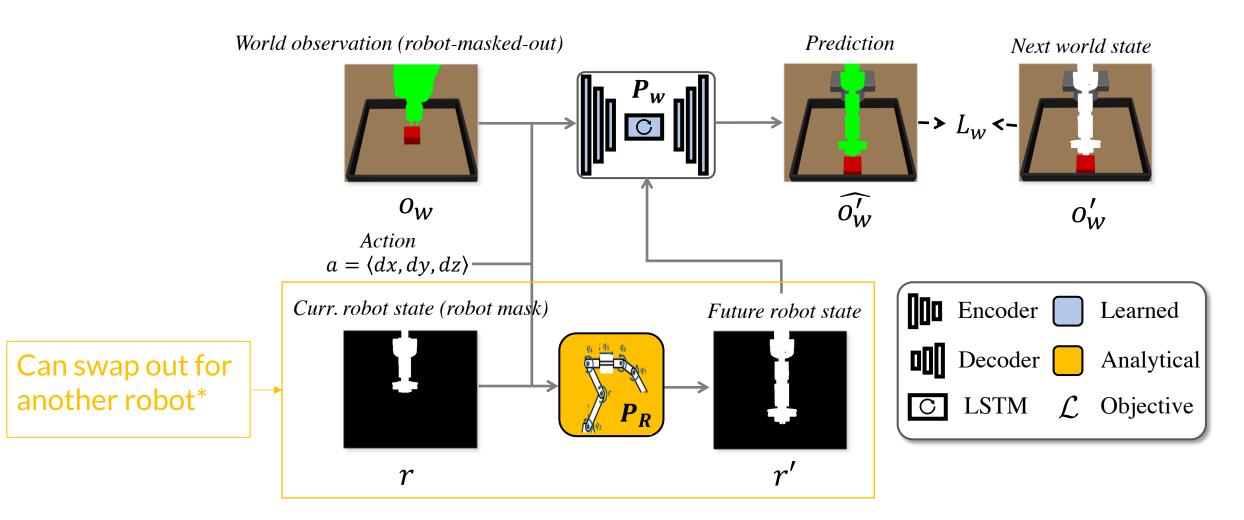
*assuming the robot does not hit any immovable barriers.

Robot-Aware Control

Idea: Disentangle the robot from the stuff we want to move in the world.



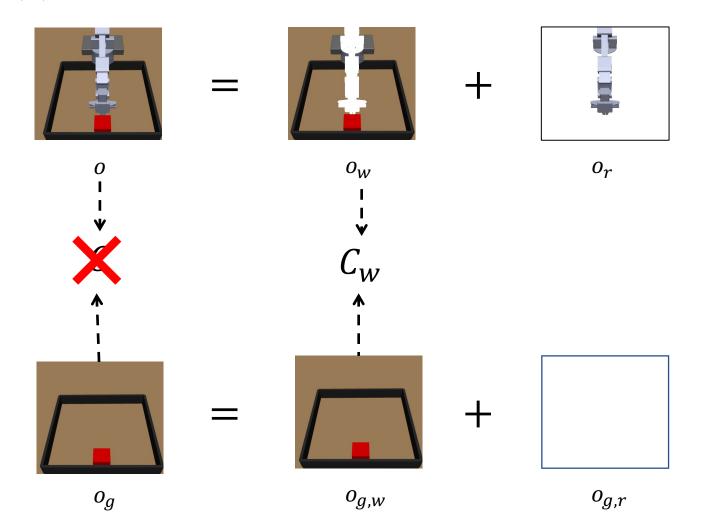
RAC Component #1: Robot-Aware World Dynamics Model



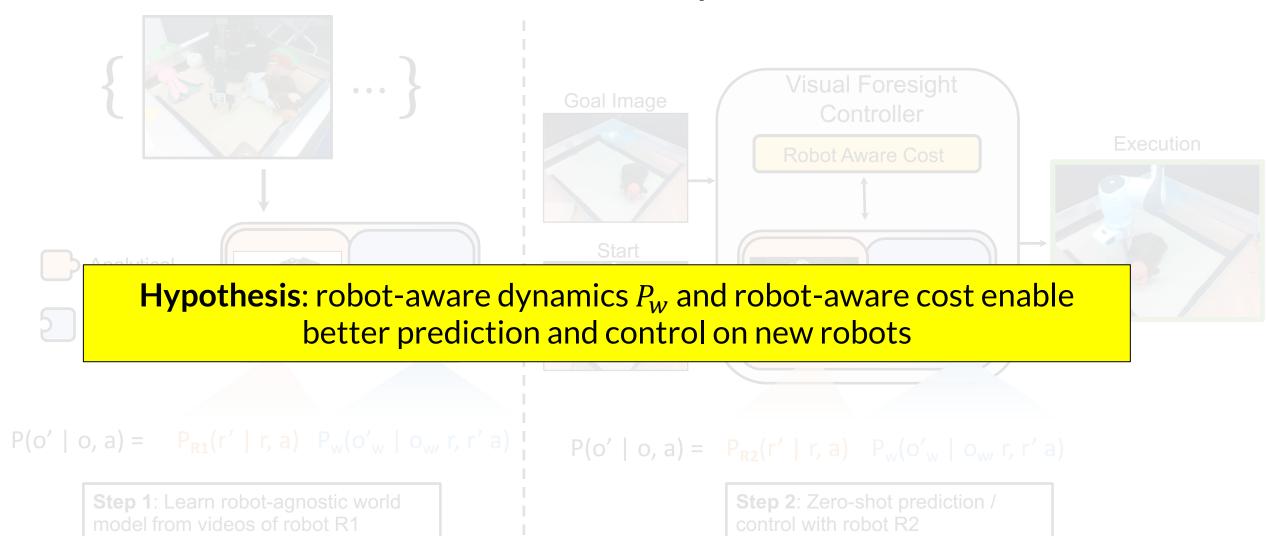
$$P(o' \mid o, a) = P_{R1}(r' \mid r, a)P_w(o'_w \mid o_w, r, r' a)$$

RAC Component #2: Robot-Aware Planning Cost

Need a function to measure whether predicted outcomes from an action plan match goal image(s).



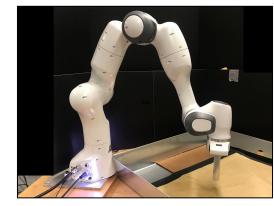
Robot-Aware Control Summary



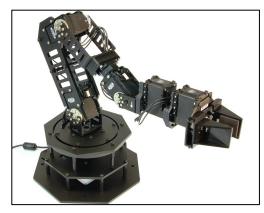
Experimental Validation on Robot Transfer Tasks

Sawyer

Baxter

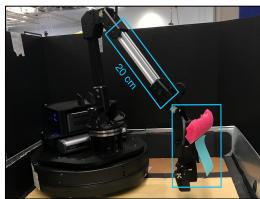


Franka Panda



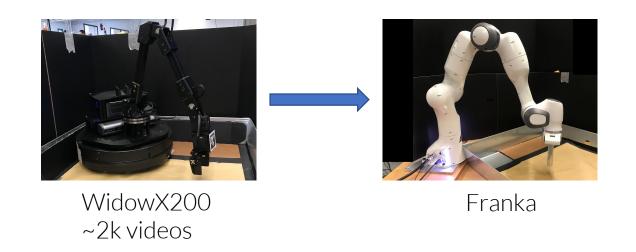
WidowX

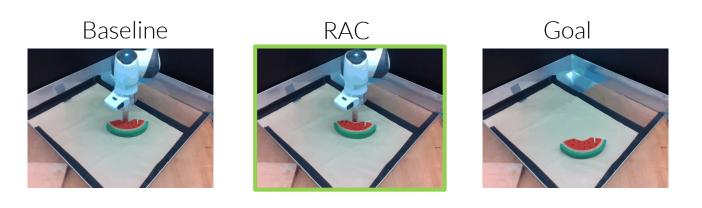
WidowX200



Modified WidowX200

Zero-shot WidowX to Franka Pushing





Dynamics Model	Cost	Fetch Push (Sim.)	Fetch Pick-and-place (Sim.)	Franka Push (Real)
VF+State	Pixel	0/20 (0%)	0/20 (0%)	0/30 (0%)
RA	RA	18/20 (90%)	8/20 (40%)	22/30 (71%)

From training on 1 robot, RAC outperforms:

• Visual Foresight baseline with no RA-model and no RA-cost

Dynamics Model	Cost	Fetch Push (Sim.)	Fetch Pick-and-place (Sim.)	Franka Push (Real)
CycleGAN+VF+State VF+State	Pixel Pixel	12/20 (60%) 0/20 (0%)	0/20 (0%) 0/20 (0%)	0/30 (0%)
RA	RA	18/20 (90%)	8/20 (40%)	22/30 (71%)

From training on 1 robot, RAC outperforms:

- Visual Foresight baseline with no RA-model and no RA-cost
- Domain Adaptation baseline with privileged access to 12K images of test robot

Dynamics Model	Cost	Fetch Push (Sim.)	Fetch Pick-and-place (Sim.)	Franka Push (Real)
CycleGAN+VF+State	Pixel	12/20 (60%)	0/20 (0%)	
VF+State	Pixel	0/20 (0%)	0/20 (0%)	0/30 (0%)
RA	Pixel	0/20 (0%)	0/20 (0%)	0/30 (0%)
VF+State	RA	12/20 (60%)	4/20 (20%)	6/30 (20%)
RA	RA	18/20 (90%)	8/20 (40%)	22/30 (71%)

From training on 1 robot, RAC outperforms:

- Visual Foresight baseline with no RA-model and no RA-cost
- Domain Adaptation Baseline with privileged access to 12K images of test robot
- Ablations of model and cost.

Dynamics Model	Cost	Fetch Push (Sim.)	Fetch Pick-and-place (Sim.)	Franka Push (Real)
CycleGAN+VF+State	Pixel	12/20 (60%)	0/20 (0%)	
VF+State	Pixel	0/20 (0%)	0/20 (0%)	0/30 (0%)
RA	Pixel	0/20 (0%)	0/20 (0%)	0/30 (0%)
VF+State	RA	12/20 (60%)	4/20 (20%)	6/30 (20%)
RA	RA	18/20 (90%)	8/20 (40%)	22/30 (71%)
VF+State (Multi-robot)	Pixel	_		11/30 (36%)
RA (Multi-robot)	RA	-	-	27/30 (90%)

From training on 1 robot, RAC outperforms:

- Visual Foresight baseline with no RA-model and no RA-cost
- Domain Adaptation Baseline with privileged access to 12K images of test robot
- Ablations of model and cost

Trends hold even after training on multiple robots!

More Experiment Visualizations

