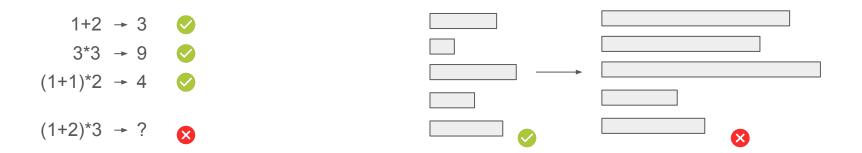
The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization

Róbert Csordás, Kazuki Irie, Jürgen Schmidhuber

Systematic generalization

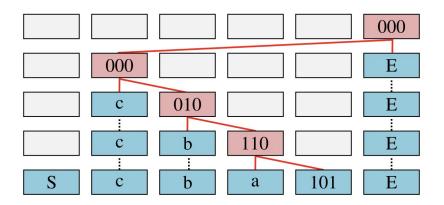
- Ability to solve problems that are governed by novel combinations of rules seen during the training.
 - Novel combination of known constituents (systematicity)
 - Generalization to longer problems (productivity)
- Learning generally applicable rules instead of pure pattern matching

Probably one of the major obstacles toward general Al



Revisiting Transformers

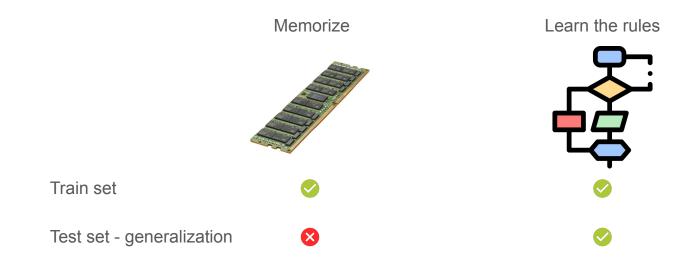
- Transformers have a structure seemingly well-suited for the task
- They should be able to build a computation graph in their layers



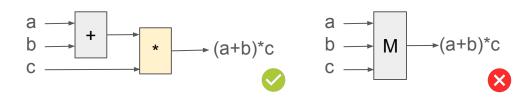
So why do they perform so badly?

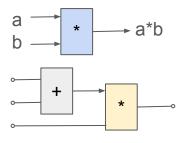
What's missing?

- There is no optimization pressure for generalization
- Only hope: inductive biases
- But what biases?

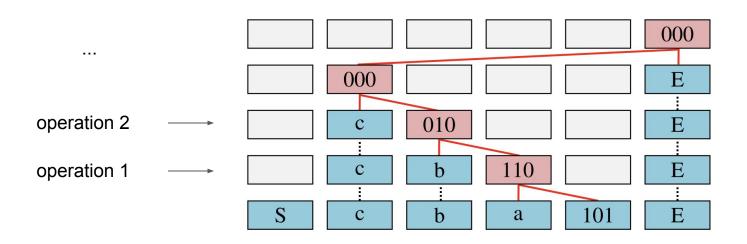


- The basis of generalization should be compositionality
- Decomposing the problem into elementary, reusable components should boost generalization

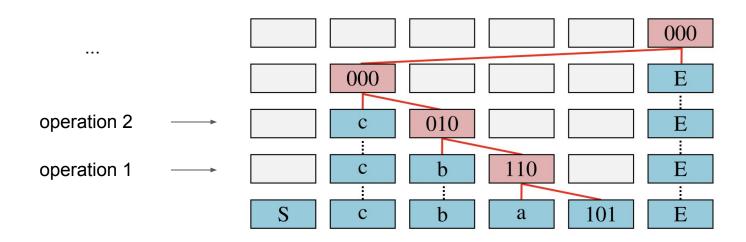




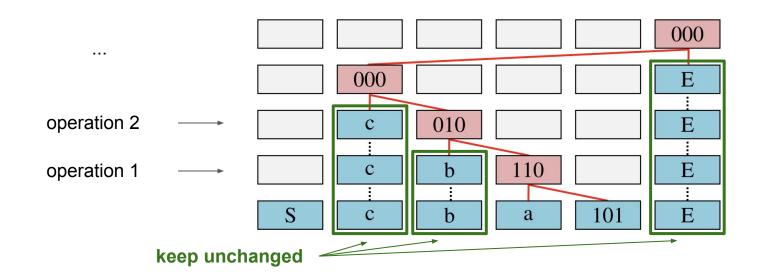
- In Transformers, the output of an operation is available only to the next layer
- For composition, all levels should have all functions available to enable compositions of elementary functions in any arbitrary orders



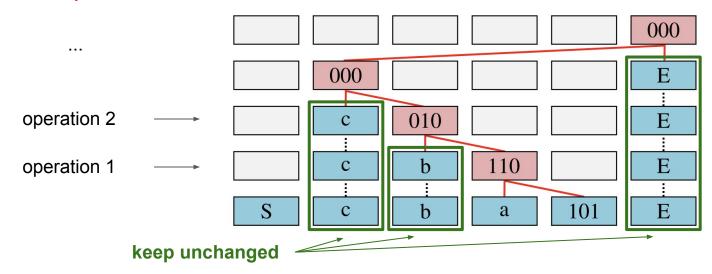
- Should use shared layers
- Should use many layers
 - At least as many as the depth of the "computation graph"



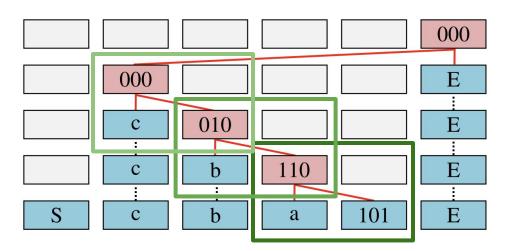
- An operation should be performed only if its inputs are ready
- Otherwise, the columns should remain unchanged



- Transformers is not well suited for keeping the states unchanged
 - Layernorm makes it especially difficult
- Add a mechanism to bias towards keeping the states unchanged until it's their turn to be processed



- Long compositions are often made of multiple local compositions
- Bias, but not restrict to local computation



- Makes it easy to keep the columns unchanged
- Gating to skip the entire Transformer layer
- Adds a bias towards Hypothesis 2

- Makes it easy to keep the columns unchanged
- Removes layernorm, and skips the whole transformation
- Adds a bias towards Hypothesis 2

```
\boldsymbol{a}^{(i,t+1)} = \operatorname{LayerNorm}(\operatorname{MultiHeadAttention}(\boldsymbol{h}^{(i,t)}, \boldsymbol{\mathsf{H}}_t, \boldsymbol{\mathsf{H}}_t) + \boldsymbol{h}^{(i,t)}) \leftarrow \operatorname{standard Transformer} \hat{\boldsymbol{h}}^{(i,t+1)} = \operatorname{LayerNorm}(\operatorname{FFN}^{\operatorname{data}}(\boldsymbol{a}^{(i,t+1)})) \leftarrow \operatorname{no residual, otherwise like standard Transformer}
```

- Makes it easy to keep the columns unchanged
- Removes layernorm, and skips the whole transformation
- Adds a bias towards Hypothesis 2

$$m{a}^{(i,t+1)} = \operatorname{LayerNorm}(\operatorname{MultiHeadAttention}(m{h}^{(i,t)}, m{H}_t, m{H}_t) + m{h}^{(i,t)}) \quad \leftarrow \operatorname{standard\ Transformer} \ \hat{m{h}}^{(i,t+1)} = \operatorname{LayerNorm}(\operatorname{FFN}^{\operatorname{data}}(m{a}^{(i,t+1)})) \quad \leftarrow \operatorname{no\ residual,\ otherwise\ like\ standard\ Transformer} \ m{g}^{(i,t+1)} = \sigma(\operatorname{FFN}^{\operatorname{gate}}(m{a}^{(i,t+1)})) \quad \leftarrow \operatorname{gate,\ parallel\ branch\ to\ } \hat{m{h}}^{(i,t+1)}$$

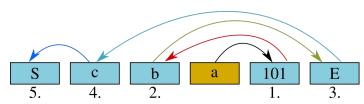
Copy gate, not just yet another gate!

- Makes it easy to keep the columns unchanged
- Removes layernorm, and skips the whole transformation
- Adds a bias towards Hypothesis 2

Copy gate, not just yet another gate!

Geometric attention

- Bias towards attending to the *nearest* match
 - The distance does not matter
- Inspired by geometric distribution
- Define an order of preference of the positions, radiating out from each column



The order in which the geometric attention considers the nodes in a single layer. Shown for column "a".

Target		1	2	3	4		
	2		1	3	4		
	4	2		1	3		
	4	3	2		1		
	4	3	2	1			
Source							

The order of visiting the nodes for each row in the attention matrix

Geometric attention

- Bias towards attending to the nearest match
- Each position has a probability of attending to it, produced by sigmoid

$$P_{i,j} = \sigma(k^{(j)\top}q^{(i)})$$

 The final attention score is then the probability of attending to that node, multiplied by the probability of *not* attending to any closer ones

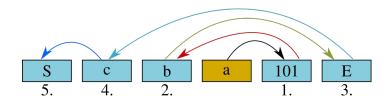
$$oldsymbol{A}_{i,j} = oldsymbol{P}_{i,j} \prod_{k \in \mathbb{S}_{i-j}} (1 - oldsymbol{P}_{i,k})$$

Efficient implementation possible in log-space with cumulative sum and scalar subtraction

The Neural Data Router

- We call the resulting architecture Neural Data Router (NDR). Key ingredients:
 - Copy gate
 - Geometric attention
 - Shared layers
 - Sufficient depth

$$g^{(i,t+1)} = \sigma(\text{FFN}^{\text{gate}}(\boldsymbol{a}^{(i,t+1)}))$$
$$\boldsymbol{h}^{(i,t+1)} = g^{(i,t+1)} \odot \hat{\boldsymbol{h}}^{(i,t+1)} + (1 - g^{(i,t+1)}) \odot \boldsymbol{h}^{(i,t)}$$



The Compositional Table Lookup (CTL) dataset

- 8 input symbols, defined by 3 bit binary strings
- Randomly generated single-argument bijective functions, denoted by letters of alphabet
- The task is to learn to generalize to longer compositions
- Can be used to demonstrate failure modes of current networks.
 - Generalizing to longer sequences

Being order sensitive (generalization depends on the order)

101 a b c 😔 c b a 101 😢

Results: CTL

- None of the baselines is able to solve this simple task
- However NDR achieves 100% generalization accuracy

	II	IID		nger	
Model	Forward	Backward	Forward	Backward	
LSTM DNC	$1.00 \pm 0.00 \\ 1.00 \pm 0.00$	0.59 ± 0.03 0.57 ± 0.06	$1.00 \pm 0.00 \\ 1.00 \pm 0.00$	0.22 ± 0.03 0.18 ± 0.02	direction sensitive
Transformer + rel	1.00 ± 0.00 1.00 ± 0.00	0.82 ± 0.39 1.00 ± 0.00	0.13 ± 0.01 0.23 ± 0.05	0.12 ± 0.01 0.13 ± 0.01	not generalizing
+ rel + gate	1.00 ± 0.00	1.00 ± 0.00	0.99 ± 0.01	0.19 ± 0.04	direction sensitive
+ abs/rel + gate	1.00 ± 0.00	1.00 ± 0.00	0.98 ± 0.02	0.98 ± 0.03	dataset specific
+ geom. att.	0.96 ± 0.04	0.93 ± 0.06	0.16 ± 0.02	0.15 ± 0.02	not generalizing
+ geom. att. + gate (NDR)	1.00 ± 0.00	1.00 ± 0.00	1.00 ± 0.00	1.00 ± 0.00	

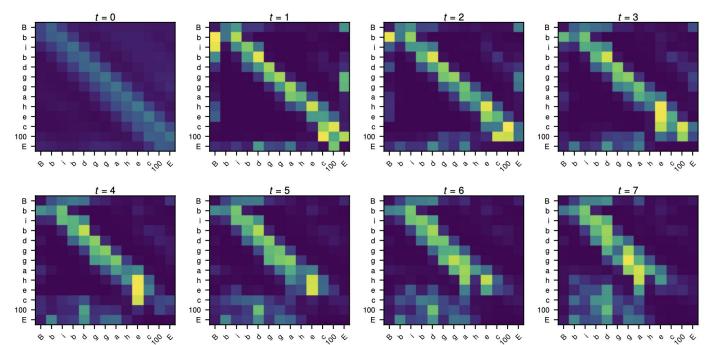
Results: Simple Arithmetics and ListOps

- Simple arithmetics (modulo 10): ((4*7)+2) = 0
- ListOps: [MED 4 8 5 [MAX 8 4 9]] = 6
- All models are good in IID setting, but only NDR generalizes

	Simple A	rithmetics	ListOPS	
	IID (15)	Test (78)	IID (15)	Test (78)
LSTM Bidirectional LSTM	$0.99 \pm 0.00 \\ 0.98 \pm 0.01$	0.74 ± 0.02 0.82 ± 0.06	$0.99 \pm 0.00 \\ 1.00 \pm 0.00$	0.71 ± 0.03 0.57 ± 0.04
Transformer + rel + abs/rel + gate + geom. att. + gate (NDR)	$egin{array}{l} 0.98 \pm 0.01 \ 1.00 \pm 0.00 \ 1.00 \pm 0.01 \ 1.00 \pm 0.00 \ \end{array}$	0.47 ± 0.01 0.77 ± 0.04 0.80 ± 0.16 0.98 ± 0.01	0.98 ± 0.00 0.98 ± 0.01 1.00 ± 0.01 1.00 ± 0.00	0.74 ± 0.03 0.79 ± 0.04 0.90 ± 0.06 0.99 ± 0.01

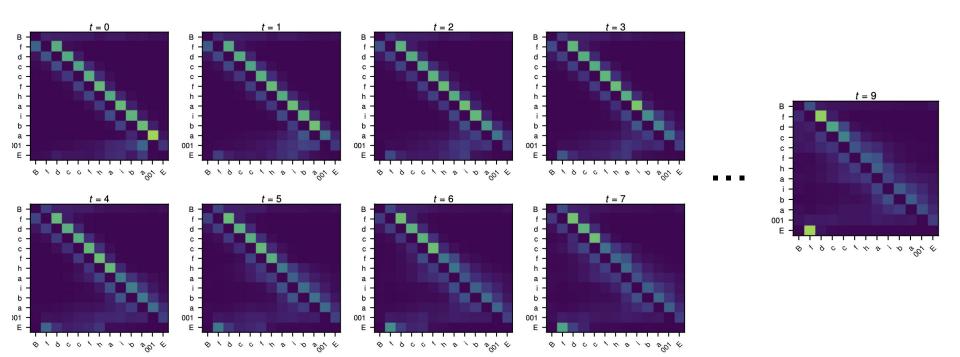
Analysis - CTL

 The attention patterns of the Transformer with relative positional embedding quickly becomes blurry



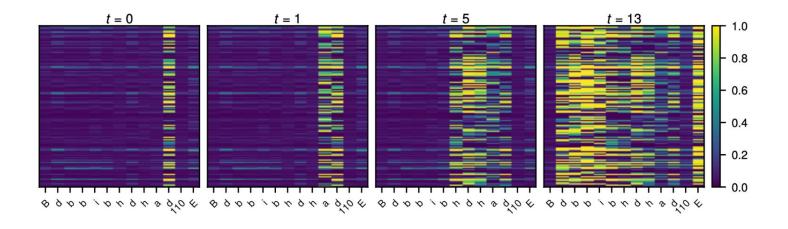
Analysis - CTL

In contrast, the attention maps of NDR remain sharp



Analysis - CTL

- The gates open sequentially, after their input is available
 - Working as intended



Concluding remarks

- Neural models are flexible, but have poor length generalization properties
- In order to generalize, Transformers should have many, shared layers
- Copy gate enables to skip operations
- Geometric attention adds a bias to locality and serialization
- Gating with geometric attention enables length generalization on the CTL task, and parse tree depth generalization on ListOps and Simple Arithmetics

Thank you for your attention!

https://arxiv.org/abs/2110.07732