

Surrogate Gap Guided Minimization Improves Sharpness-Aware Training

Juntang Zhuang¹, Boqing Gong², Liangzhe Yuan², Yin Cui², Hartwig Adam², Nicha C. Dvornek¹, Sekhar Tatikonda¹, James S. Duncan¹, Ting Liu²

1: Yale University

2: Google Research

Generalization and curvature of loss surface

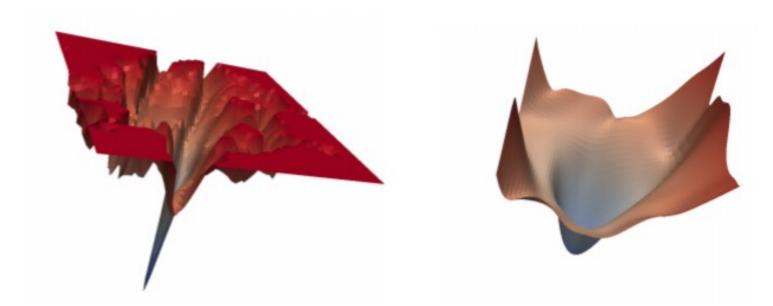
• Minimizing the training loss \rightarrow sharp local minima (left) \rightarrow poor generalization

^[1] Chaudhari, Pratik, et al. "Entropy-sgd: Biasing gradient descent into wide valleys." *Journal of Statistical Mechanics: Theory and Experiment* 2019.12 (2019): 124018.

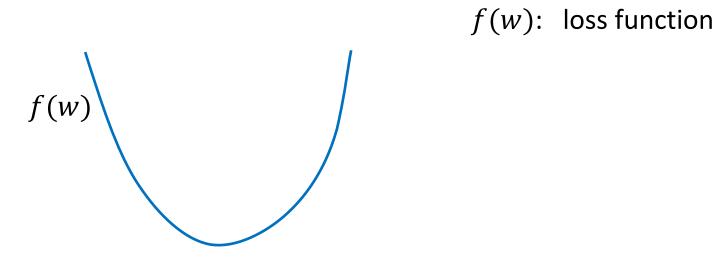
^[2] Jiang, Yiding, et al. "Fantastic generalization measures and where to find them." *arXiv preprint arXiv:1912.02178* (2019).

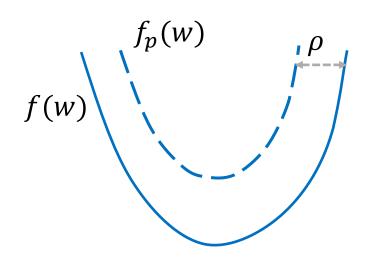
^[3] Niladri S Chatterji, et al. The intriguing role of module criticality in the generalization of deep networks. ICLR 2020

Generalization and curvature of loss surface



- Minimizing the training loss \rightarrow sharp local minima (left) \rightarrow poor generalization
- Flatter local minima (right) → better generalization [1,2,3]
- [1] Chaudhari, Pratik, et al. "Entropy-sgd: Biasing gradient descent into wide valleys." *Journal of Statistical Mechanics: Theory and Experiment* 2019.12 (2019): 124018.
- [2] Jiang, Yiding, et al. "Fantastic generalization measures and where to find them." arXiv preprint arXiv:1912.02178 (2019).
- [3] Niladri S Chatterji, et al. The intriguing role of module criticality in the generalization of deep networks. ICLR 2020

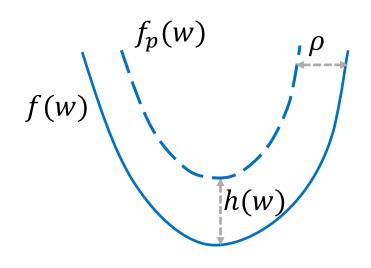




f(w): loss function

 $f_p(w)$: the maximum loss within the neighborhood (with a fixed radius ρ) centered around w

$$f_p(w) \approx f(w + \rho \frac{\nabla f(w)}{||\nabla f(w)||})$$

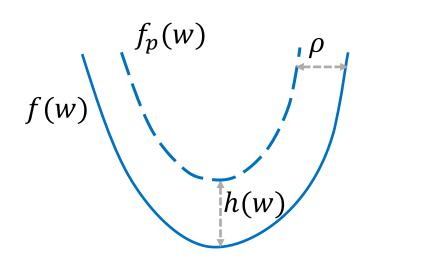


f(w): loss function

 $f_p(w)$: the maximum loss within the neighborhood (with a fixed radius ρ) centered around w

$$f_p(w) \approx f(w + \rho \frac{\nabla f(w)}{||\nabla f(w)||})$$

h(w): $f_p(w) - f(w)$ The "surrogate gap"



f(w): loss function

 $f_p(w)$: the maximum loss within the neighborhood (with a fixed radius ρ) centered around w

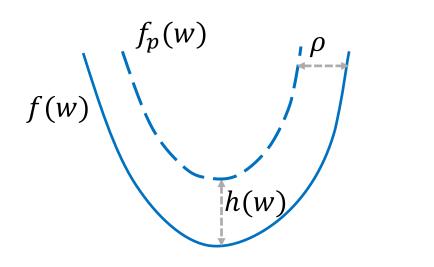
$$f_p(w) \approx f(w + \rho \frac{\nabla f(w)}{||\nabla f(w)||})$$

h(w): $f_p(w) - f(w)$ The "surrogate gap"

At a local minimum:

$$h(w) \approx \frac{1}{2} |\sigma_{max}| \rho^2 \propto |\sigma_{max}|$$

 σ_{max} : dominate eigenvalue of the Hessian



f(w): loss function

 $f_p(w)$: the maximum loss within the neighborhood (with a fixed radius ρ) centered around w

$$f_p(w) \approx f(w + \rho \frac{\nabla f(w)}{||\nabla f(w)||})$$

h(w): $f_p(w) - f(w)$ The "surrogate gap"

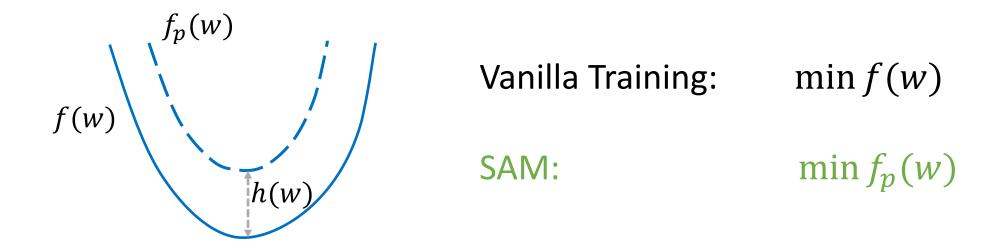
At a local minimum:

$$h(w) \approx \frac{1}{2} |\sigma_{max}| \rho^2 \propto |\sigma_{max}|$$

 σ_{max} : dominate eigenvalue of the Hessian

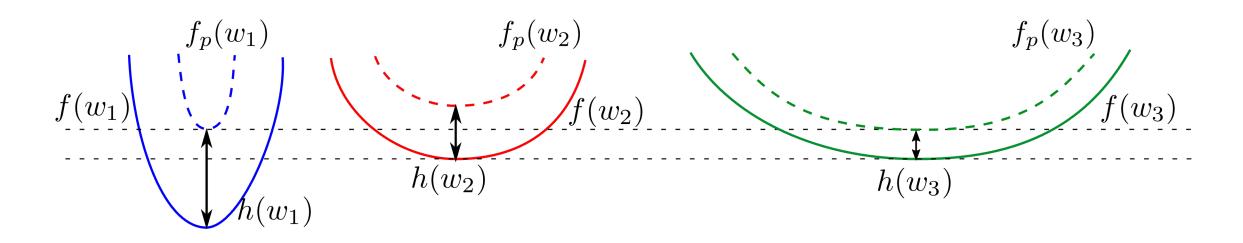
Larger h, sharper surface, worse generalization

Sharpness-Aware Minimization (SAM)



[1] Foret, Pierre, et al. "Sharpness-aware minimization for efficiently improving generalization." *arXiv preprint arXiv:2010.01412* (2020).

Potential Caveat of Sharpness-Aware Minimization (SAM)

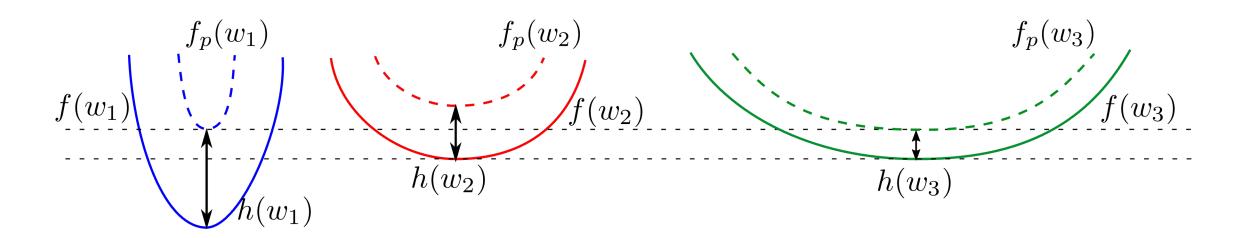


Left to right:

Sharpness
$$(w_1) > Sharpness (w_2) > Sharpness (w_3)$$

 $h(w_1) > h(w_2) > h(w_3)$
 $f_p(w_1) < f_p(w_2) > f_p(w_3)$

Potential Caveat of Sharpness-Aware Minimization (SAM)



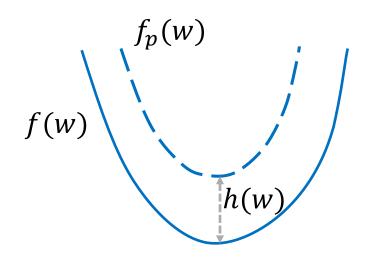
Left to right:

Sharpness
$$(w_1) > Sharpness (w_2) > Sharpness (w_3)$$

 $h(w_1) > h(w_2) > h(w_3)$
 $f_p(w_1) < f_p(w_2) > f_p(w_3)$

 f_p might disagree with sharpness, surrogate gap h agrees with sharpness (Lemma 3.1, 3.2, 3.3)

Surrogate Gap Guided Sharpness-Aware Minimization (GSAM)



Vanilla Training: $\min f(w)$

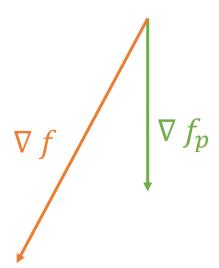
SAM: $\min f_p(w)$

GSAM (ours): $\min(f_p(w), h(w))$

Minimize training loss

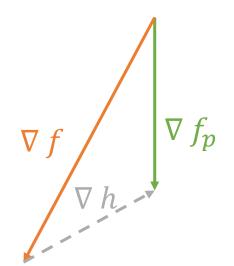
Minimize generalization gap

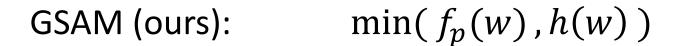
GSAM (ours): $\min(f_p(w), h(w))$

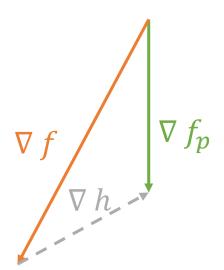


GSAM (ours): $\min(f_p(w), h(w))$

$$\nabla h = \nabla f_p - \nabla f$$

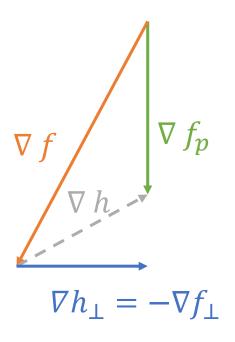






$$\nabla h = \nabla f_p - \nabla f$$

 ∇h might have **negative** inner product with ∇f_p \rightarrow minimizing h would **increase** f_p



GSAM (ours):
$$\min(f_p(w), h(w))$$

$$\nabla h = \nabla f_p - \nabla f$$

 ∇h might have **negative** inner product with ∇f_p \rightarrow minimizing h would **increase** f_p

Decompose ∇h onto parallel and vertical to ∇f_p , update in ∇h_{\perp} not affects f_p .

$$\nabla h = \nabla f_p - \nabla f$$

$$\nabla h \text{ might have } \textit{negative} \text{ inner product with } \nabla f_p$$

$$\Rightarrow \text{ minimizing } h \text{ would } \textit{increase } f_p$$

$$\text{Decompose } \nabla h \text{ onto parallel and vertical to } \nabla f_p,$$

$$\text{update in } \nabla h_{\perp} \textit{ not affects } f_p.$$

GSAM (ours):
$$\min(f_p(w), h(w))$$

$$\nabla h = \nabla f_p - \nabla f$$

Decompose ∇h onto parallel and vertical to ∇f_{p} , update in ∇h_{\perp} not affects f_{p} .

$$\nabla f^{GSAM} = \nabla f_p + \alpha \nabla h_{\perp} = \nabla f_p - \alpha \nabla f_{\perp}$$

$$\min f_p$$

$$\min h, \text{ not affect } f_p$$

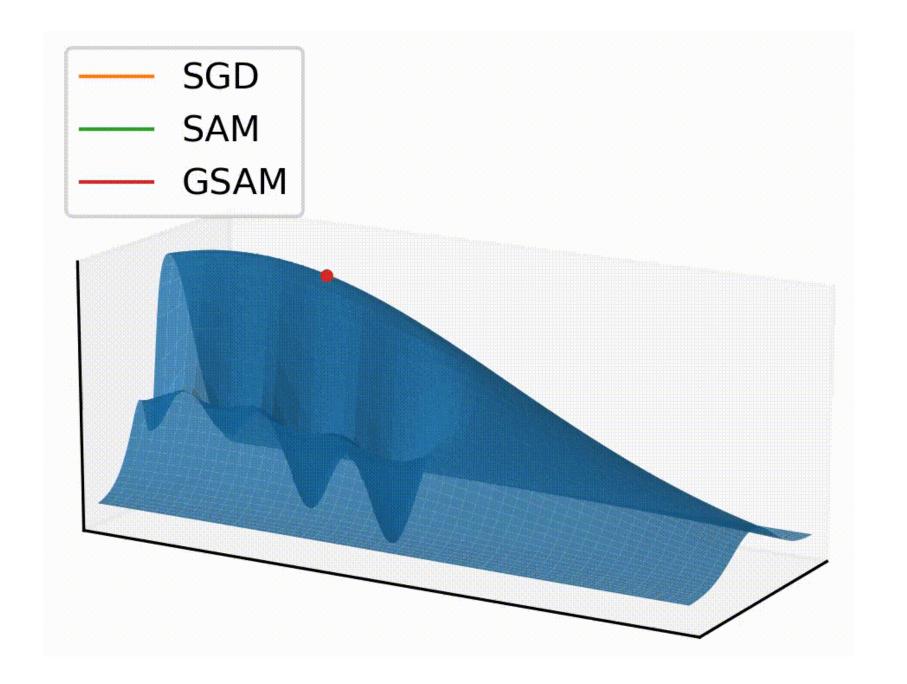


Table 1: Top-1 Accuracy (%) on ImageNet datasets for ResNets, ViTs and MLP-Mixers trained with Vanilla SGD or AdamW, SAM, and GSAM optimizers.

Model	Training	ImageNet-v1	ImageNet-Real	ImageNet-V2	ImageNet-R	ImageNet-C
			ResNet			
ResNet50	Vanilla (SGD)	76.0	82.4	63.6	22.2	44.6
	SAM	76.9	83.3	64.4	23.8	46.5
	GSAM	77.2	83.9	64.6	23.6	47.6
ResNet101	Vanilla (SGD)	77.8	83.9	65.3	24.4	48.5
	SAM	78.6	84.8	66.7	25.9	51.3
	GSAM	78.9	85.2	67.3	26.3	51.8
ResNet152	Vanilla (SGD)	78.5	84.2	66.3	25.3	50.0
	SAM	79.3	84.9	67.3	25.7	52.2
	GSAM	80.0	85.9	68.6	27.3	54.1

	'	Vis	sion Transformer			
ViT-S/32	Vanilla (AdamW)	68.4	75.2	54.3	19.0	43.3
	SAM	70.5	77.5	56.9	21.4	46.2
	GSAM	73.8	80.4	60.4	22.5	48.2
	Vanilla (AdamW)	74.4	80.4	61.7	20.0	46.5
ViT-S/16	SAM	78.1	84.1	65.6	24.7	53.0
	GSAM	79.5	85.3	67.3	25.3	53.3
	Vanilla (AdamW)	71.4	77.5	57.5	23.4	44.0
ViT-B/32	SAM	73.6	80.3	60.0	24.0	50.7
	GSAM	76.8	82.7	63.0	25.1	51.7
ViT-B/16	Vanilla (AdamW)	74.6	79.8	61.3	20.1	46.6
	SAM	79.9	85.2	67.5	26.4	56.5
	GSAM	81.0	86.5	69.2	27.1	55.7

	•	Vis	sion Transformer		•	
ViT-S/32	Vanilla (AdamW)	68.4	75.2	54.3	19.0	43.3
	SAM	70.5	77.5	56.9	21.4	46.2
	GSAM	73.8	80.4	60.4	22.5	48.2
ViT-S/16	Vanilla (AdamW)	74.4	80.4	61.7	20.0	46.5
	SAM	78.1	84.1	65.6	24.7	53.0
	GSAM	79.5	85.3	67.3	25.3	53.3
	Vanilla (AdamW)	71.4	77.5	57.5	23.4	44.0
ViT-B/32	SAM	73.6	80.3	60.0	24.0	50.7
	GSAM	76.8	82.7	63.0	25.1	51.7
	Vanilla (AdamW)	74.6	79.8	61.3	20.1	46.6
ViT-B/16	SAM	79.9	85.2	67.5	26.4	56.5
	GSAM	81.0	86.5	69.2	27.1	55.7
			MLP-Mixer			
	Vanilla (AdamW)	63.9	70.3	49.5	16.9	35.2
Mixer-S/32	SAM	66.7	73.8	52.4	18.6	39.3
	GSAM	68.6	75.8	55.0	22.6	44.6
Mixer-S/16	Vanilla (AdamW)	68.8	75.1	54.8	15.9	35.6
	SAM	72.9	79.8	58.9	20.1	42.0
	GSAM	75.0	81.7	61.9	23.7	48.5
Mixer-S/8	Vanilla (AdamW)	70.2	76.2	56.1	15.4	34.6
	SAM	75.9	82.5	62.3	20.5	42.4
	GSAM	76.8	83.4	64.0	24.6	47.8
Mixer-B/32	Vanilla (AdamW)	62.5	68.1	47.6	14.6	33.8
	SAM	72.4	79.0	58.0	22.8	46.2
	GSAM	73.6	80.2	59.9	27.9	52.1
Mixer-B/16	Vanilla (AdamW)	66.4	72.1	50.8	14.5	33.8
	SAM	77.4	83.5	63.9	24.7	48.8
THINGI DITO						

Conclusions:

- Surrogate Gap is an equivalent measure of sharpness
- Minimize both f_p (perturbed training loss) and h (sharpness)
- Gradient decomposition to avoid conflicts of multi-objective optimization
- Code available on project website (https://sites.google.com/view/gsam-iclr22)

