Generalized Decision Transformer for Offline Hindsight Information Matching

Hiroki Furuta¹, Yutaka Matsuo¹, Shixiang Shane Gu²

¹The University of Tokyo, ²Google Brain

Contact: furuta@weblab.t.u-tokyo.ac.jp

Reinforcement Learning with Hindsight Information

Orthogonal to standard reward maximization scheme ...

- $f \Box$ Future trajectory information $au_{f t:T}$
- ☐ Context Z
- $oldsymbol{\Box}$ Contextual policy $\pi(\mathbf{a_t}|\mathbf{s_t},\mathbf{z})$
- fill Parameterized reward function ${f r}({f s_t},{f a_t},{f z})$

We derive a generic problem formulation: Hindsight Information Matching (HIM).

Information statistics $I(au_t)$: any function of a trajectory $au_t = \{s_t, a_t, s_{t+1}, a_{t+1}, \dots\}$

Information statistics $I(au_t)$: any function of a trajectory $au_t = \{s_t, a_t, s_{t+1}, a_{t+1}, \dots\}$

Feature Function $\Phi(\cdot,\cdot):S\times A\to F$: e.g. reward function, some dims of state

Trajectory & Information statisctic: $\tau_t^{\Phi} = \{\phi_t, \phi_{t+1}, \dots, \phi_T\}, \phi_t = \Phi(s_t, a_t) \in F$ $I^{\Phi}(\tau_t)$

Information statistics $I(au_t)$: any function of a trajectory $au_t = \{s_t, a_t, s_{t+1}, a_{t+1}, \dots\}$

Feature Function $\Phi(\cdot,\cdot):S\times A\to F$: e.g. reward function, some dims of state

Trajectory & Information statisctic: $\tau_t^{\Phi} = \{\phi_t, \phi_{t+1}, \dots, \phi_T\}, \phi_t = \Phi(s_t, a_t) \in F$ $I^{\Phi}(\tau_t)$

Information Matching problem (inspired by moment matching)

Objective:
$$\min_{\pi} \mathbb{E}_{z \sim p(z), \tau \sim \rho_z^{\pi}(\tau)} \left[D(I^{\Phi}(\tau), z) \right]$$

Information statistics $I(au_t)$: any function of a trajectory $au_t = \{s_t, a_t, s_{t+1}, a_{t+1}, \dots\}$

Feature Function $\Phi(\cdot,\cdot):S\times A\to F$: e.g. reward function, some dims of state

Trajectory & Information statisctic: $\tau_t^{\Phi} = \{\phi_t, \phi_{t+1}, \dots, \phi_T\}, \phi_t = \Phi(s_t, a_t) \in F$ $I^{\Phi}(\tau_t)$

Information Matching problem (inspired by moment matching)

Objective:
$$\min_{\pi} \mathbb{E}_{z \sim p(z), \tau \sim \rho_z^{\pi}(\tau)} \left[D(I^{\Phi}(\tau), z) \right]$$

Hindsight Information Matching algorithms

setting desired z* as $\mathbf{z}^* = \mathbf{I}^{\Phi}(\tau)$ eans trajectory τ ; optimal w.r.t $\mathbf{z} = \mathbf{z}^*$ i.e. samples of (τ_i, \mathbf{z}_i^*) in be used to accelerate RL or do BC.

Based on the choice of information statistics $I^{\Phi}(au)$, all prior works can be categorized to four generic problem types

Objective

$$\min_{\pi} \mathbb{E}_{z \sim p(z), \tau \sim \rho_z^{\pi}(\tau)} \left[D(I^{\Phi}(\tau), z) \right]$$

$$I^{\Phi}(au)$$
 an be ...

- (1)
- (2)
- (3)
- (4)

Based on the choice of information statistics $I^{\Phi}(\tau)$, all prior works can be categorized to four generic problem types Objective

$$\min_{\pi} \mathbb{E}_{z \sim p(z), \tau \sim \rho_z^{\pi}(\tau)} \left[D(I^{\Phi}(\tau), z) \right]$$

 $I^{\Phi}(au)$ an be ...

- (1) Goal-based
- (2)
- (3)
- (4)

 ϕ_T

Based on the choice of information statistics $I^{\Phi}(\tau)$, all prior works can be categorized to four generic problem types **Objective**

$$\min_{\pi} \mathbb{E}_{z \sim p(z), \tau \sim \rho_z^{\pi}(\tau)} \left[D(I^{\Phi}(\tau), z) \right]$$

$$I^{\Phi}(au)$$
an be ...

- (1) Goal-based
- (2) Multi-task
- (3)
- (4)

$$\phi_T$$

$$\arg\max\sum_t \gamma^t r(s_t, a_t, \cdot)$$

Based on the choice of information statistics $I^{\Phi}(\tau)$, all prior works can be categorized to four generic problem types **Objective**

$$\min_{\pi} \mathbb{E}_{z \sim p(z), \tau \sim \rho_z^{\pi}(\tau)} \left[D(I^{\Phi}(\tau), z) \right]$$

$$I^{\Phi}(au)$$
an be ...

- (1) Goal-based
- (2) Multi-task
- (3) Return-based
- (4)

$$\phi_T$$

$$\arg\max\sum_t \gamma^t r(s_t, a_t, \cdot)$$

$$\sum_t \gamma^t r_t$$

Based on the choice of information statistics $I^{\Phi}(\tau)$, all prior works can be categorized to four generic problem types **Objective**

$$\min_{\pi} \mathbb{E}_{z \sim p(z), \tau \sim \rho_z^{\pi}(\tau)} \left[D(I^{\Phi}(\tau), z) \right]$$

$$I^{\Phi}(au)$$
an be ...

- (1) Goal-based
- (2) Multi-task
- (3) Return-based
- (4) Full trajectory imitation

$$\phi_T$$

$$rg \max \sum_t \gamma^t r(s_t, a_t, \cdot)$$

$$\sum_t \gamma^t r_t$$

au

Based on the choice of information statistics $I^{\Phi}(\tau)$, all prior works can be categorized to four generic problem types **Objective**

$$\min_{\pi} \mathbb{E}_{z \sim p(z), \tau \sim \rho_z^{\pi}(\tau)} \left[D(I^{\Phi}(\tau), z) \right]$$

$$I^{\Phi}(au)$$
 an be ...

$$\phi_T$$

$$rg \max \sum_t \gamma^t r(s_t, a_t, \cdot)$$

$$\sum_t \gamma^t r_t$$

$$I^{\Phi}(\tau) = \operatorname{histogram}(r_t, \gamma)$$

Hindsight Information Matching: Summary

Given a choice of $I^{\Phi}(\tau)$ HIM algorithms consist of three components:

- ☐ Algorithm Type (e.g. "RL" or "BC")
- ☐ Training Procedure (e.g. "online" or "offline")
- Network **Architectures** (e.g. MLP, CNN, Transformer, etc...)

Method	Algo. Type	Training	$\mathbf{I}^{\mathbf{\Phi}}(au)$	Architectures
Andrychowicz et al. (2017)	RL	Online	ϕ_T	MLP
Pong et al. (2018)	RL	Online	ϕ_T	MLP
Chebotar et al. (2021)	RL	Offline	ϕ_T	CNN
Li et al. (2020)	RL	Online	$\arg\max\sum_{t} \gamma^{t} r(s_{t}, a_{t}, \cdot)$ $\arg\max\sum_{t} \gamma^{t} r(s_{t}, a_{t}, \cdot)$	MLP
Eysenbach et al. (2020)	BC/RL	On/Offline	$arg \max \sum_{t} \gamma^{t} r(s_{t}, a_{t}, \cdot)$	MLP
Lynch et al. (2019)	BC	Offline	ϕ_T	Stochastic RNN
Ghosh et al. (2021)	BC	Online	ϕ_T	MLP
Srivastava et al. (2019)	BC	Online	$\sum_t \gamma^t r_t$	Fast Weights
Kumar et al. (2019)	BC	Online	$\sum_t \gamma^t r_t$	MLP
Janner et al. (2021)	BC	Offline	$egin{array}{c} \sum_t \gamma^t r_t \ \sum_t \gamma^t r_t \ \sum_t \gamma^t r_t ext{ or } \phi_T \end{array}$	Transformer
Duan et al. $(2017)^3$	BC	Offline	au	MLP + LSTM
Generalized DT (ours)	BC	Offline	Any	Transformer
DT (Chen et al., 2021a)	BC	Offline	$\sum_t \gamma^t r_t$	Transformer
Categorical DT (ours) ⁴	BC	Offline	$\operatorname{histogram}(r_t, \gamma)$	Transformer
Bi-Directional DT (ours)	BC	Offline	au	Transformer

Hindsight Information Matching: Summary

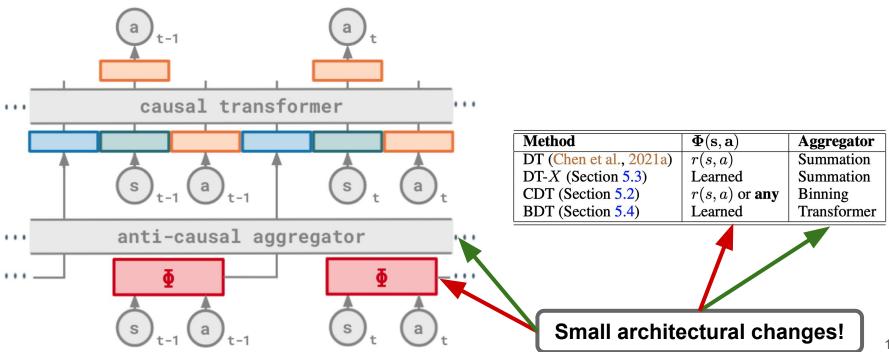
Given a choice of $I^{\Phi}(\tau)$ HIM algorithms consist of three components;

- ☐ Algorithm Type (e.g. "RL" or "BC")
- ☐ Training Procedure (e.g. "online" or "offline")
- Network Architectures (e.g. MLP, CNN, Transformer, etc...)

	Method	Algo. Type	Training	$\mathbf{I}^{\mathbf{\Phi}}(au)$	Architectures
	Andrychowicz et al. (2017)	RL	Online	ϕ_T	MLP
	Pong et al. (2018)	RL	Online	ϕ_T	MLP
	Chebotar et al. (2021)	RL	Offline	ϕ_T	CNN
	Li et al. (2020)	RL	Online	$\arg\max\sum_{t} \gamma^{t} r(s_{t}, a_{t}, \cdot)$ $\arg\max\sum_{t} \gamma^{t} r(s_{t}, a_{t}, \cdot)$	MLP
	Eysenbach et al. (2020)	BC/RL	On/Offline	$rg \max \sum_t \gamma^t r(s_t, a_t, \cdot)$	MLP
	Lynch et al. (2019)	BC	Offline	ϕ_T	Stochastic RNN
	Ghosh et al. (2021)	BC	Online	ϕ_T	MLP
	Srivastava et al. (2019)	BC	Online	$\sum_t \gamma^t r_t$	Fast Weights
Our Dramagala		BC	Online	$\sum_t \gamma^t r_t$	MLP
Our P	roposals	BC	Offline	$\sum_{t}^{t} \gamma^{t} r_{t} \ \sum_{t}^{t} \gamma^{t} r_{t} \ \sum_{t}^{t} \gamma^{t} r_{t} \text{ or } \phi_{T}$	Transformer
	Duan et al. (2017)	BC	Offline	au	MLP + LSTM
	Generalized DT (ours)	BC	Offline	Any	Transformer
	DT (Chen et al., 2021a)	BC	Offline	$\sum_t \gamma^t r_t$	Transformer
	Categorical DT (ours) ⁴	BC	Offline	$\operatorname{histogram}(r_t, \gamma)$	Transformer
	Bi-Directional DT (ours)	BC	Offline	au	Transformer

Generalized Decision Transformer (GDT)

Generalization of Decision Transformer [Chen et al. 2021] with only small architectural changes (feature function Φ , aggregator)



Categorical DT for State-feature Matching

Feature Function Φ: Reward or any state-features (e.g. xyz-velocities)

Input: Histogram of Φ by binning (i.e. categorical)

Metric: Empirical Wasserstein-1 distance (between target and policy)

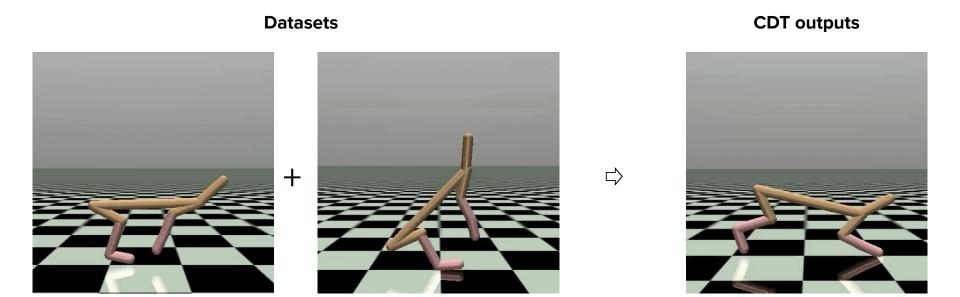
Categorical DT can match ...

- 1D reward or x-velocity distributions
- 2D xy-velocities distribution better than competitive baselines

			Bet	ter matching in 2D!
Method	Expert	ant Medium	Average	
Categorical DT	0.797 ± 0.216	0.244 ± 0.063	0.521	
DT	1.714 ± 0.121	0.260 ± 0.067	0.987	
Meta-BC	1.295 ± 0.708	0.351 ± 0.205	0.823	
FOCAL (Li et al., 2021)	1.473 ± 0.892	0.913 ± 0.455	1.193	16

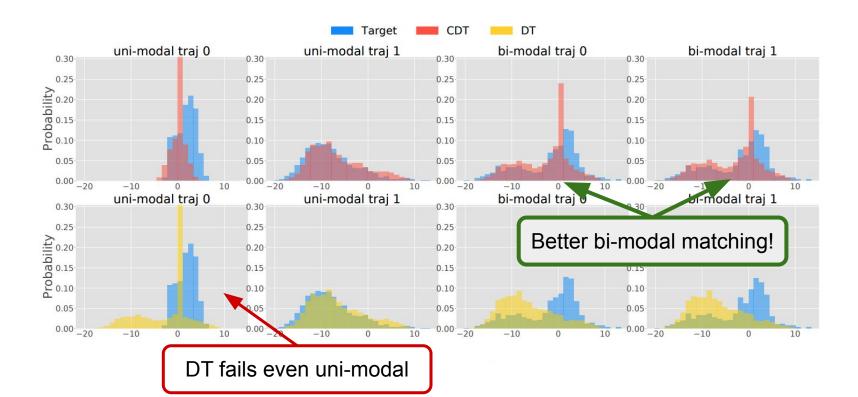
Synthesizing Unseen Bi-modal Distribution (CDT)

Cheetah running forward and backflipping during a single rollout



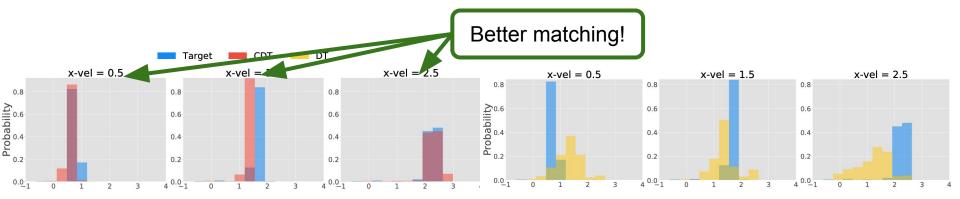
Synthesizing Unseen Bi-modal Distribution (CDT)

Cheetah running forward and backflipping during a single rollout



Diverse Unseen Distribution from Meta-Learning Task

Categorical DT generalizes unseen target better and slightly outperforms Meta-BC



Method	x-vel: 0.5	x-vel: 1.5	x-vel: 2.5	Average
Categorical DT	0.060 ± 0.026	0.211 ± 0.022	0.149 ± 0.110	0.140
DT	1.197 ± 0.227	0.533 ± 0.105	0.861 ± 0.247	0.864
Meta-BC	0.150 ± 0.069	0.152 ± 0.127	0.167 ± 0.055	0.156
FOCAL (Li et al., 2021)	0.472 ± 0.005	0.952 ± 0.073	0.346 ± 0.186	0.590

Bi-directional DT for Distribution Matching in Full State

Feature Function Φ: Learned (not specified)

Input: Full state in target trajectories (using anti-causal Transformer)

In 1D tasks, BDT seems competitive to CDT or DT w/o state-feature specification!

Method	Average			
DT-AE	0.843			
DT-CPC	1.591			
DT-AE (joint)	2.650			
DT-CPC (joint)	1.410		Method	Average
DT-E2E	2.517		Categorical DT	0.347
DT-AE (frozen)	0.916	Competitive	DT	0.387
DT-CPC (frozen)	1.405	performance!	BC (no-context)	1.498
BDT (N=20)	0.631	—	Meta-BC	0.699
BDT (<i>N</i> =50)	0.443		FOCAL (Li et al., 2021)	1.147

 We generalize a wide range of hindsight algorithms as Hindsight Information Matching (HIM) problem.

- We generalize a wide range of hindsight algorithms as Hindsight Information Matching (HIM) problem.
- To solve any kind of HIM problems, we propose Generalized Decision
 Transformer, and its practical instantiations (Categorical & Bi-directional DT).

- We generalize a wide range of hindsight algorithms as Hindsight Information Matching (HIM) problem.
- To solve any kind of HIM problems, we propose Generalized Decision
 Transformer, and its practical instantiations (Categorical & Bi-directional DT).
- 3. **Categorical DT** can generalize even synthesized bi-modal distributions or diverse unseen distributions better.

- We generalize a wide range of hindsight algorithms as Hindsight Information Matching (HIM) problem.
- To solve any kind of HIM problems, we propose Generalized Decision
 Transformer, and its practical instantiations (Categorical & Bi-directional DT).
- 3. **Categorical DT** can generalize even synthesized bi-modal distributions or diverse unseen distributions better.
- 4. **Bi-directional DT** can solve distribution matching comparable to CDT or DT only given raw states without state-feature specification.

- We generalize a wide range of hindsight algorithms as Hindsight Information Matching (HIM) problem.
- To solve any kind of HIM problems, we propose Generalized Decision
 Transformer, and its practical instantiations (Categorical & Bi-directional DT).
- 3. **Categorical DT** can generalize even synthesized bi-modal distributions or diverse unseen distributions better.
- 4. **Bi-directional DT** can solve distribution matching comparable to CDT or DT only given raw states without state-feature specification.

We hope our proposed framework, algorithms, and benchmarks inspire more supervised sequence modeling approaches in RL beyond classic reward maximization.