Focus on the Common Good: Group Distributional Robustness Follows

Vihari Piratla¹

Praneeth Netrapalli²

Sunita Sarawagi¹

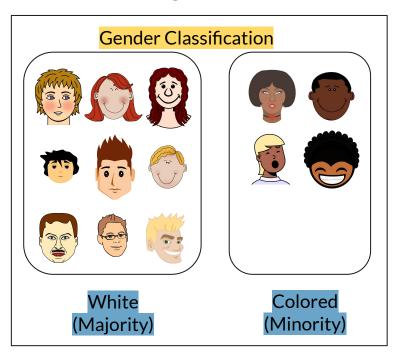
Google Research

¹IIT Bombay

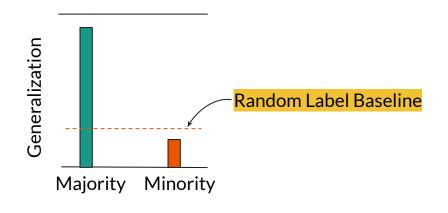
²Google Research

Datasets & Sub-population

Machine Learning datasets often contain disproportionately sized sub-populations

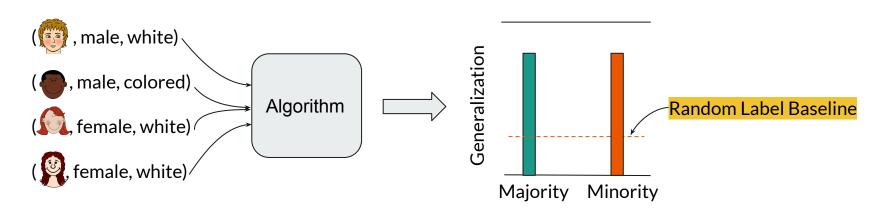


Standard methods generalize better on majority often at the expense of performance on minority.



Sub-population shift problem

Train on group annotated data with the objective of uniform generalization across all groups irrespective of their size.



Problem setting popularized by Sagawa et.al. 2020

Baselines: ERM & ERM-UW

ERM learns features from majority and overfits to minority.

Does not generalize to minority sub-population: our starting observation.

Weighted ERM (ERM-UW) up-weighs minority sub-population, improves minority's strength

Also overfits on the minority sub-population with deep models.

Baselines: Group-DRO

Group-DRO¹ trains on the group with the worst risk at any training step

- Avoids minority group overfitting since it avoids zero training loss on any group while the average loss is non-zero
- Fails when the groups have heterogeneous levels of noise or transfer as we will show

¹Sagawa, Shiori, et al. "Distributionally robust neural networks." ICLR. 2019.

Common Gradient Descent (CGD)

Train on the group whose gradient leads to largest decrease in training loss over all groups – "common good".

 Δ_{ij} = Loss decrement on jth group using ith group gradient gradient inner product of jth and ith group

Goodness of ith group = product over all j Δ_{ij}

Pick the group with best goodness value and update parameters

CGD: algorithm

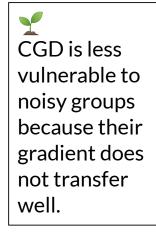
Pick hyperparameters: η_{α} α^t is tth step training weight vector **Algorithm 1** CGD Algorithm 1: **Input:** Number of groups: k, Step sizes: η_{α} , η_{α} 2: Initialize θ^0 , $\alpha^0 = (\frac{1}{h}, \dots, \frac{1}{h})$ 3: **for** $t = 1, 2, \dots, do$ → For every update step and group for $i \in \{1, \dots, k\}$ do $\Delta \ell_{is} \approx \exp(\eta_{\alpha} \nabla \ell_i(\theta^t)^{\top} \nabla \ell_s(\theta^t))$ $\forall s \in [1 \dots k]$ First order approximation of loss 5: $\alpha_i^{t+1} \leftarrow \alpha_i^t \prod_{s \in [k]} \Delta \ell_{is}$ decrement on sth group 6: end for $\alpha_i^{t+1} \leftarrow \alpha_i^{t+1} / \|\alpha^{t+1}\|_1 \quad \forall i \in [1 \dots k]$ $\theta^{t+1} \leftarrow \theta^t - \eta \sum_{i \in \{1, \dots, k\}} \alpha_i^{t+1} \nabla \ell_i(\theta^t)$ Assimilate goodness of ith group 10: end for Normalize group weights, update We prove that CGD is a sound optimization algorithm parameters and return as it converges to FOSP of macro-averaged group loss.

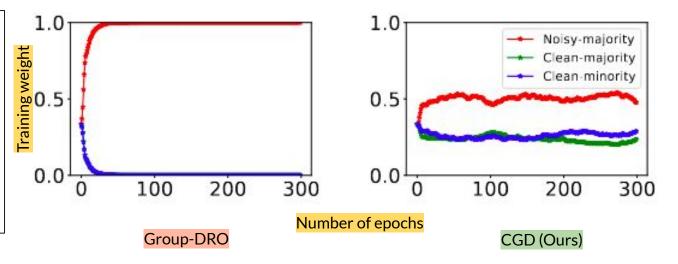
Synthetic Setup: Noisy Group

Randomly partitioned linearly separable data in to two majority and one minority.

First group has label noise on 20% examples.

Fit a linear classifier using Group-DRO vs CGD.

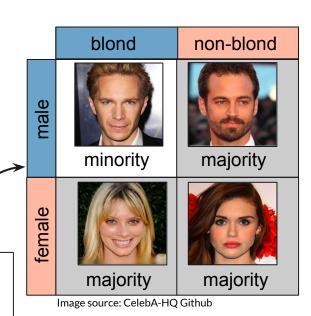




Experiments & Evaluation

- Training data contains highly disproportionate sizes of sub-population
- Metrics: Worst and (micro) average performance on train domains
- An ideal algorithm improves
 worst-generalization performance without
 hurting average performance

Example: Blond/Non-blond on CelebA
Male-blond is 52 times smaller than male non-blond

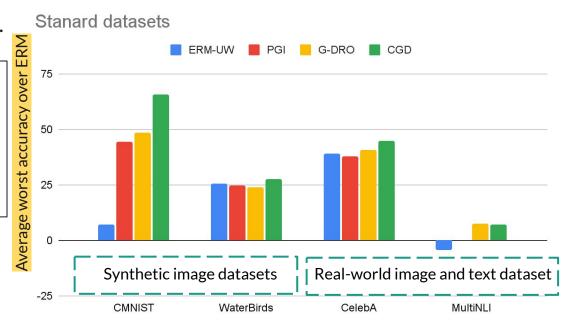


Results on Standard Datasets

Standard datasets with known spurious correlations.

CGD performs as well or better than other sub-population shift, domain generalization baselines without hurting average accuracy

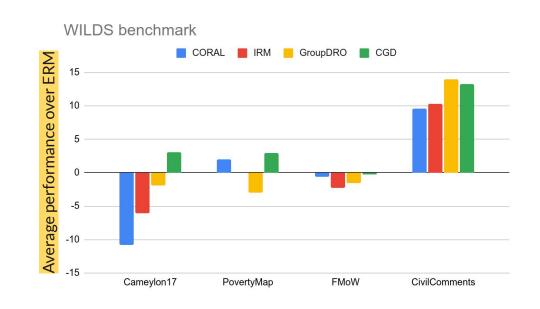
Image datasets with induced spurious correlation



PGI: Ahmed, Faruk, et al. "Systematic generalisation with group invariant predictions." ICLR. 2021.

CGD: Results on WILDS

- CORAL and IRM are strong domain generalization baselines
- 2. Group-DRO worse than ERM on ¾ cases.
- 3. CGD is at least as good as ERM and better when there is large sub-population shift.



CORAL: Sun, Baochen, and Kate Saenko. "Deep coral: Correlation alignment for deep domain adaptation." *ECCV* 2016. IRM: Arjovsky, Martin, et al. "Invariant risk minimization." *arXiv preprint arXiv:1907.02893* (2019).

Take-home

- 1. CGD is a simple new algorithm that models inter-group interaction to improve minority group generalization
- 2. CGD converges to stationary point of group averaged loss
- 3. Insights on CGD through multiple simple synthetic settings
- On seven real-world datasets, CGD either matches or improves over strong contemporary baselines
- 5. Our implementation is released publicly at: https://github.com/vihari/cgd/

Thanks!