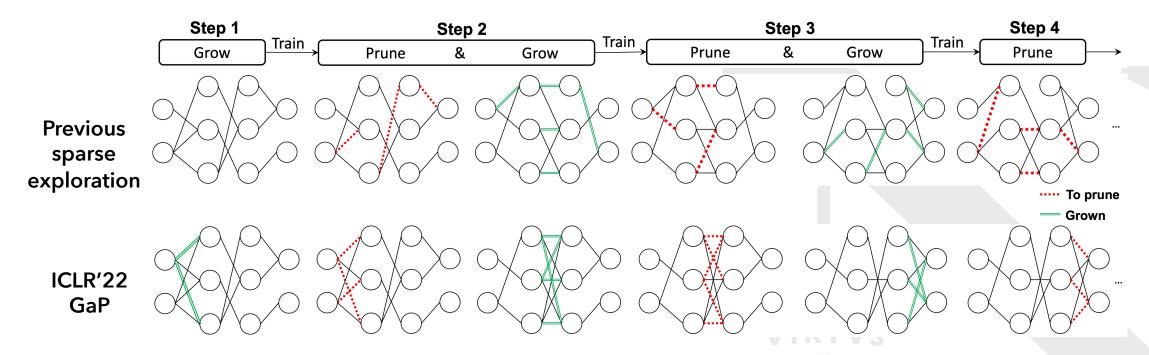
Effective Model Sparsification by Scheduled Grow-and-Prune Methods

Xiaolong Ma
Department of Electrical and Computer Engineering



Motivation

Two different schedules

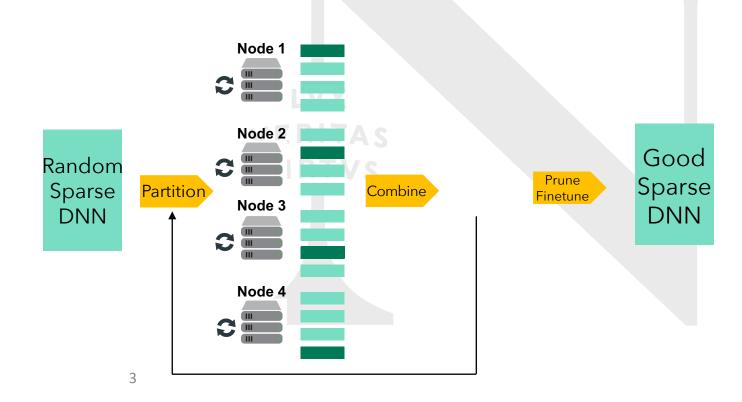
Previous: Greedy and random

- No guarantee for full exploration
- Mutation in model-level less flexibility

GaP: Scheduled Grow-and-Prune

- Guaranteed full exploration for sparse mask approximately <u>3x</u> efficiency.
- Mutation in layer-level more flexibility and design space.
- Mask parallelism

Effective Grow-and-Prune Methods

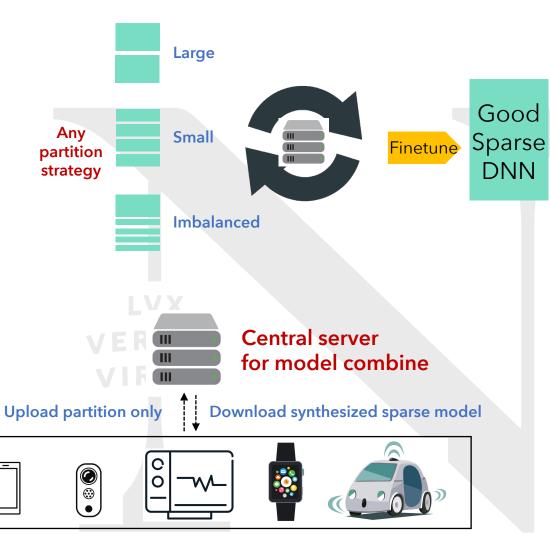

Cyclic GaP (C-GaP)

- Train a sparse model whole time
- Training on one machine.
- Grow and prune DNN partition in a sequential order.

Parallel GaP (P-GaP)

- Train a sparse model whole time
- Training each partition at the same time on multiple machine.
- Combine explored partitions and discard others.

Effective Grow-and-Prune Methods


Why is the GaP method important

High flexibility

- The partition strategy partition number, partition size, partition sequence order.
- Export and finetune a good sparse model at any time.

P-GaP distributed training

- Does not need to use large batch size to fully utilize computing resource.
- Data communication between training nodes are kept in minimal (lowbandwidth friendly).
- Masks in different partitions are less correlated.

Node client for distributed learning

Experimental Results: Accuracy

GaP is proved to be effective on multiple ML tasks

1. Image classification

ResNet-50 on ImageNet.

Fair comparison with extended baselines.

We show the best accuracy.

	Method	Distribution	Epochs	80% sparse Acc	90% sparse Acc
	Dense	-	250	Dense acc: 78.2%	
	Prune from dense	uniform	750/1250	77.1	75.8
	RigL	uniform	100	74.6	72.0
	RigL _{5x}		500	76.6	75.7
]	RigL _{12x}		1200	77.1	76.0
	C-GaP		990	77.9	76.3
	P-GaP		1110	77.5	76.1
	RigL	Non-uniform (ERK)	100	75.1	73.0
	RigL _{5x}		500	77.1	76.4
	RigL _{12x}		1200	77.4	76.8
(C-GaP	Non-uniform	990	78.1	77.9

Ours

SOTA

Experimental Results: Flexibility

Partition number and partition strategy

1. Partition number

• From 1 partition (DSD) to multiple.

Method	Sparsity	Task	# Part	Acc (%)
	0.9	ResNet-50	1	75.9
			4	76.3
C-GaP		Transformer	1	26.8
			3	27.7
			6	27.1

2. Partition strategy

• Cyclic vs. random.

Method	Sparsity	Task	# Part	Strategy	Acc (%)
C Cap	0.9	ResNet-50	4	Cyclic	77.9
			4	Random	77.8
C-GaP		Transformer	3	Cyclic	27.7
			3	Random	27.0

