PriorGrad: Improving Conditional Denoising Diffusion Models with Data-Dependent Adaptive Prior

Sang-gil Lee, Heeseung Kim, Chaehun Shin, Xu Tan, Chang Liu, Qi Meng,
Tao Qin, Wei Chen, Sungroh Yoon, Tie-Yan Liu

Data Science & Artificial Intelligence Laboratory

Electrical and Computer Engineering

Seoul National University

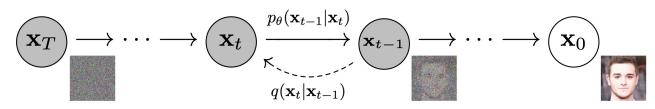
Diffusion model revolution... at what cost?

Diffusion model achieves **SOTA** results on generative tasks...

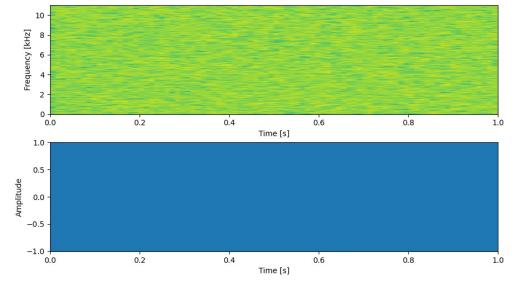
But how *efficient* are these models?

- Slow training brings a huge computational burden
- Slow sampling renders them not practical for real-world application

Why?: standard Gaussian prior is not efficient enough!



Source: Ho et al., 2020



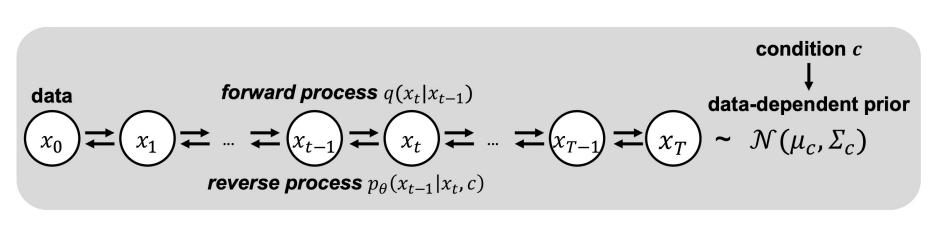
Source: Dhariwal et al., 2021

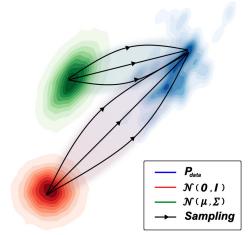
PriorGrad investigates the following question

For a conditional diffusion-based model, can we formulate a more informative prior without incorporating additional computational or parameter complexity?

PriorGrad presents efficiency for conditional diffusion models for free!

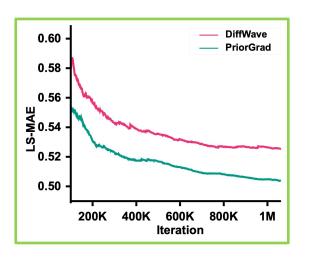
- Introduce a data-dependent prior based on the conditional information
- Construct a conditional non-standard Gaussian prior for training & inference
- Faster training & sampling, and SOTA results on speech synthesis tasks





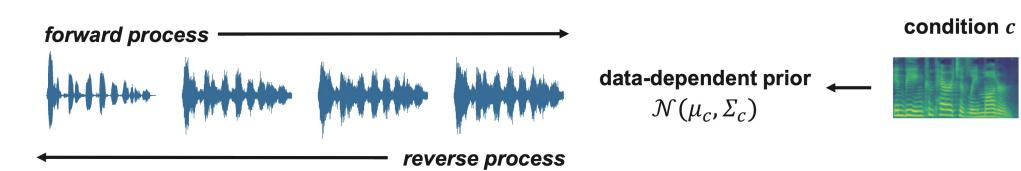
Faster training, sampling, and smaller capacity for diffusion models, for free!

PriorGrad enables faster training!



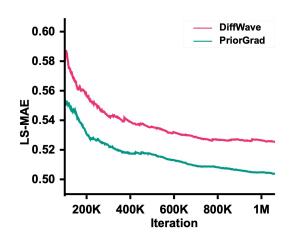
Method	T	Training Steps			
Wictiod	T_{infer}	500K	1M		
GT	-	4.42 =	± 0.07		
DiffWave	6	3.98 ± 0.08	4.01 ± 0.08		
Diffwave	50	4.12 ± 0.08	4.12 ± 0.08		
PriorGrad	6	4.02 ± 0.08	4.14 ± 0.08		
FIIOIGIAU	50	4.21 ± 0.08	$\textbf{4.25} \pm \textbf{0.08}$		

Method	Parameters Base (2.62M) Small (1.23M)		
GT	4.38 ± 0.08		
DiffWave PriorGrad	4.06 ± 0.08 4.12 ± 0.08	3.90 ± 0.09 4.02 ± 0.08	



Faster training, sampling, and smaller capacity for diffusion models, for free!

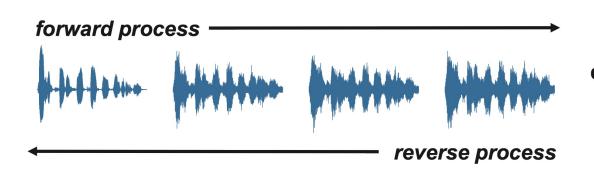
PriorGrad enables faster sampling!



Method	T_{infer}	Trainir 500K	ng Steps 1M
GT	-	4.42	± 0.07
DiffWave	6 50	3.98 ± 0.08 4.12 ± 0.08	4.01 ± 0.08 4.12 ± 0.08
PriorGrad	6 50	4.02 ± 0.08 4.21 ± 0.08	4.14 ± 0.08 4.25 ± 0.08

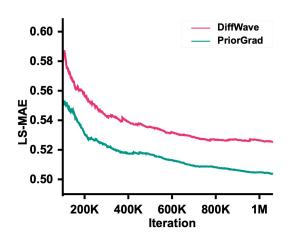
Method	Parameters Base (2.62M) Small (1.23M)		
GT	4.38 ± 0.08		
DiffWave PriorGrad	4.06 ± 0.08 4.12 ± 0.08	3.90 ± 0.09 4.02 ± 0.08	

condition c



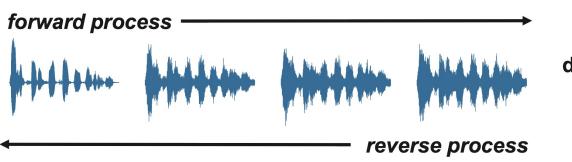
Faster training, sampling, and smaller capacity for diffusion models, for free!

PriorGrad enables smaller model capacity!



Method	T_{infer}	Training Steps 500K 1M		
GT	-	4.42 ± 0.07		
DiffWave	6 50	3.98 ± 0.08 4.12 ± 0.08	4.01 ± 0.08 4.12 ± 0.08	
PriorGrad	6 50	4.02 ± 0.08 4.21 ± 0.08	4.14 ± 0.08 4.25 ± 0.08	

Method	Parai	meters			
Wiethod	Base (2.62M) Small (1.23M)				
GT	4.38 ± 0.08				
DiffWave	4.06 ± 0.08	3.90 ± 0.09			
PriorGrad	$\textbf{4.12} \pm \textbf{0.08}$	$\textbf{4.02} \pm \textbf{0.08}$			



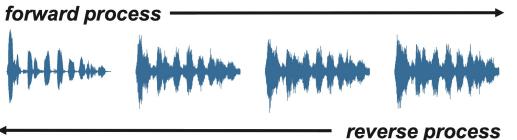
 $\begin{array}{c} \text{condition } c \\ \\ \text{data-dependent prior} \\ \mathcal{N}(\mu_c, \Sigma_c) \end{array}$

PriorGrad achieves the new SOTA likelihood-based vocoder

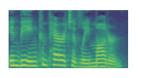
Outperforms DiffWave (Kong et al., 2021) and flow-based models (WaveGlow, WaveFlow)

Method	T_{infer}	MOS	RTF	Parameters
GT	_	4.60 ± 0.05	-	-
DiffWave / PriorGrad	6 12 50	$4.10 \pm 0.08 / 4.20 \pm 0.08$ $4.15 \pm 0.08 / 4.29 \pm 0.08$ $4.19 \pm 0.07 / 4.33 \pm 0.07$	0.1388 0.2780 1.1520	2.62M
WaveGlow † WaveFlow †	-	$4.09 \pm 0.08 4.01 \pm 0.09$	0.0780 0.1759	87.9M 22.3M
HiFi-GAN (V1) †	-	$\textbf{4.44} \pm \textbf{0.05}$	0.0068	14.0M

DiffWave 0.5264 1.0920 9.7822 16.4035 72698.62 1650	${c}$	conditio					2000	Forward proc
	.89	1608.89	42236.93	15.5542	9.2820	0.9976	0.5048	PriorGrad
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.22	1650.22	72698.62	16.4035	9.7822	1.0920	0.5264	DiffWave
Method LS-MAE () MR-STFT () MCD () F ₀ RMSE () $S(x_T, x_0)$ () $S(\tilde{x}_0, x_0)$	(0) (\downarrow)	$\mathbf{S}(ilde{x}_0,x_0)$	$S(x_T, x_0) (\downarrow)$	F_0 RMSE (\downarrow)	$MCD(\downarrow)$	MR-STFT (↓)	LS-MAE (↓)	Method



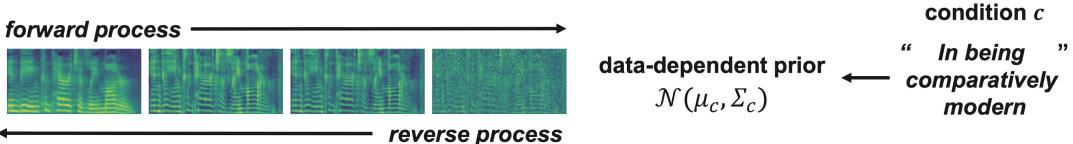
data-dependent prior $\mathcal{N}(\mu_c, \Sigma_c)$



PriorGrad achieves the new SOTA acoustic model

- Outperforms every well-known acoustic models (FastSpeech 2, Glow-TTS, Grad-TTS)
- High-quality sampling with just 2 inference steps

Method	T_{\cdot} .	MOS	RTF	Parameters	
Method	T_{infer}	MOS		Encoder	Decoder
GT	-	4.65 ± 0.05	-	-	-
GT (Vocoder)	-	4.50 ± 0.06	-	-	-
	2	2.80 ± 0.17 / 4.25 ± 0.08	0.0069		
Baseline / PriorGrad	6	3.67 ± 0.12 / 4.29 ± 0.07	0.0113	11.5M	3.5M
	12	4.14 ± 0.08 / $\textbf{4.39}\pm\textbf{0.08}$	0.0176		
Cred TTC+	2	3.43 ± 0.15	0.0090	7.2M	7.6M
Grad-TTS†	10	$\textbf{4.38} \pm \textbf{0.05}$	0.0308	/.ZIVI	7.0IVI
FastSpeech 2	-	4.19 ± 0.08	0.0040	11.5M	11.5M
Glow-TTS†	-	4.23 ± 0.08	0.0081	7.2M	21.4M
	· · · · · · · · · · · · · · · · · · ·				



Theoretical benefits

PriorGrad can use a simpler model to represent the reverse diffusion

Proposition 2 Let $L(\mu, \Sigma, \mathbf{x}_0; \theta)$ denote the -ELBO loss in Proposition 1. Suppose that ϵ_{θ} is a linear function. Under the constraint that $\det(\Sigma) = \det(\mathbf{I})$, we have $\min_{\theta} L(\mu, \Sigma, \mathbf{x}_0; \theta) \leq \min_{\theta} L(\mathbf{0}, \mathbf{I}, \mathbf{x}_0; \theta)$.

PriorGrad guarantees faster convergence with the smaller condition number of the Hessian

$$rac{\lambda_{ ext{max}}(\mathbf{H})}{\lambda_{ ext{min}}(\mathbf{H})}$$
 , where $\mathbf{H} = rac{\partial^2 L}{\partial oldsymbol{\epsilon}_{ heta}^2} \cdot rac{\partial oldsymbol{\epsilon}_{ heta}}{\partial heta} \cdot \left(rac{\partial oldsymbol{\epsilon}_{ heta}}{\partial heta}
ight)^T + rac{\partial L}{\partial oldsymbol{\epsilon}_{ heta}} \cdot rac{\partial^2 oldsymbol{\epsilon}_{ heta}}{\partial heta^2}$

Details in the paper!

Open-source: microsoft/NeuralSpeech @ GitHub

Samples: https://speechresearch.github.io/priorgrad/

