Reinforcement Learning with Sparse Rewards using Guidance from Offline Demonstration

Desik Rengarajan Gargi Vaidya, Akshay Sarvesh, Dileep Kalathil, Srinivas Shakkottai

- Designing reward functions is a challenging problem in reinforcement learning.
- Providing sparse rewards that only indicate whether the task is completed partially or fully is easier.
- Existing RL algorithms fail to learn in a reasonable time in sparse environments due to needless exploration.
- For many problems there exists data that has been gathered over time using an empirically (sub-optimal) behavior policy.
- Additionally, this behavior data might only contain measurements of a subset of the true state.
- Can we use such data to aid learning in sparse reward environments?

Contributions

- Develop an algorithm, Learning Online with Guidance Offline (LOGO), that can exploit offline demonstration data for reinforcement learning in a sparse reward setting.
- **Theoretical guarantee:** Derive a lower bound on the performance improvement of our algorithm.
- Derive a generalized version of the Performance Difference Lemma for policy dependent reward functions to develop a surrogate objective.
- Extend LOGO for the case where the demonstration data only contains a censored version of the true state.
- Demonstrate on MuJoCo and real world environments.

Each iteration of LOGO has two steps,

• **Step 1: Policy Improvement:** One step policy improvement using the Trust Region Policy Optimization (TRPO).

$$\pi_{k+1/2} = \operatorname*{arg\,max}_{\pi} \quad \mathbb{E}_{s \sim d^{\pi_k}, a \sim \pi} \left[A_R^{\pi_k}(s, a) \right] \quad \text{s.t.} \quad D_{\mathrm{KL}}^{\pi_k}(\pi, \pi_k) \leq \delta$$

 Step 2: Policy Guidance: Find a policy closest to the behavior policy, subject to it being in the trust region of the policy generated in the first step.

$$\pi_{k+1} = \arg\min_{\pi} \ D_{\mathrm{KL}}^{\pi}(\pi, \pi_{\mathrm{b}}) \quad \text{s.t.} \quad D_{\mathrm{KL}}^{\mathsf{max}}(\pi, \pi_{k+1/2}) \leq \delta_{k}$$

 Step 2 ensures that the policy chosen is always guided by the behavior policy, but the level of alignment with the behavior policy can be reduced by shrinking the trust region.

Assumption

In the initial episodes of learning, $\mathbb{E}_{a \sim \pi_h} [A_R^{\pi}(s, a)] \geq \beta > 0, \forall s$.

Theorem

Suppose π_k and $\pi_{k+1/2}$ are related by the policy improvement step and $\pi_{k+1/2}$ and π_{k+1} are related by the policy guidance step, then

(i) If $\pi_{k+1/2}$ satisfies Assumption 1, then

$$J_R(\pi_{k+1}) - J_R(\pi_k) \geq \frac{-\sqrt{2\delta}\gamma\epsilon_{R,k}}{(1-\gamma)^2} + \frac{\beta}{(1-\gamma)} - \frac{\epsilon_{R,k+1/2}}{(1-\gamma)}\sqrt{2D_{\mathrm{KL}}^\pi(\pi_{k+1},\pi_{\mathrm{b}})}.$$

(ii) If $\pi_{k+1/2}$ does not satisfy Assumption 1, then

$$J_R(\pi_{k+1}) - J_R(\pi_k) \ge -(\sqrt{2\delta}\gamma \epsilon_{R,k} + 3R_{\mathsf{max}}\delta_k)/(1-\gamma)^2.$$

Where $\epsilon_{R,k}$ and $\epsilon_{R,k+1/2}$ are as defined before and $R_{\text{max}} = \max_{s,a} |R(s,a)|$.

LOGO

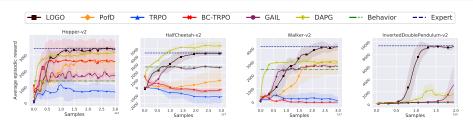
- Derive a surrogate function for $D_{\mathrm{KL}}^{\pi}(\pi, \pi_{\mathrm{b}})$ that can be estimated using a policy dependent reward function C_{π} as $C_{\pi}(s, a) = \log(\pi(s, a)/\pi_{\mathrm{b}}(s, a))$.
- Approximate the policy guidance step as

$$\pi_{k+1} = \arg\min_{\pi} \ \mathbb{E}_{s \sim d^{\pi_{k+1/2}}, a \sim \pi(s, \cdot)} [A^{\pi_{k+1/2}}_{C_{\pi_{k+1/2}}}(s, a)] \quad \text{s.t.} \quad D^{\max}_{\mathrm{KL}}(\pi, \pi_{k+1/2}) \leq \delta_k.$$

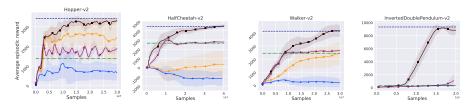
- Train a discriminator using the demonstration data and the data generated by the policy $\pi_{k+1/2}$ to approximate $C_{\pi_{k+1/2}}$ when $\pi_{\rm b}$ is not available.
- \bullet Extend LOGO to incomplete observation setting by estimating $C_{\pi_{k+1/2}}$ using a projected version of the state.

ICLR 2022 LOGO 5 / 7

Experiments: MuJoCo



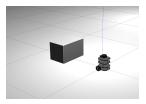
(a) Evaluation on MuJoCo with full offline observation.



(a) Evaluation on MuJoCo with incomplete offline observation.

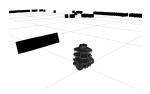
ICLR 2022 LOGO

- Evaluate the performance of LOGO in the real-world using TurtleBot on two tasks
 - Waypoint tracking
 - Obstacle avoidance
- ullet Create a sub-optimal $\pi_{\rm b}$ by training TRPO on our own low fidelity simulator, use it for guidance to train LOGO in Gazebo with sparse rewards, and evaluate in the real-world



(a) Gazebo setup

(b) Real-world setup



(c) Real-world 2D Lidar scan

ICLR 2022 LOGO

Thank You!