Training Structured Neural Networks Through Manifold Identification and Variance Reduction

HUANG Zih-Syuan, LEE Ching-pei

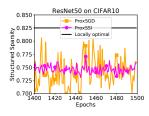
The 10th International Conference on Learning Representations

Poster #6536

Structured Neural Networks

- In many scenarios, it is desirable to obtain neural networks with a certain structure
- Achieved by adding a regularizer to training/optimization objective
- Examples (regularizer in the bracket):
 - Structured or unstructured sparsity (ℓ_1 -norm or group-LASSO norm)
 - Binary/discrete neural networks (indicator function of the feasible set, or penalty for violating constraints)

State of the Art in Deep Learning



- Only convergence guarantees to stationary points, but no guarantee for the structure of their output model
- Proximal stochastic gradient methods: ProxSGD (Yang et al., 2019, ICLR'19), ProxSSI (Deleu and Bengio, 2021), Yun et al. (2021, NeurIPS'21): artificial structure from the proximal operator
 - The output structure can be far from that of the point of convergence, due to the variance of the stochastic gradients
 - Known to output unstable and highly suboptimal structure in the convex setting (Sun et al., 2019; Poon et al., 2018)

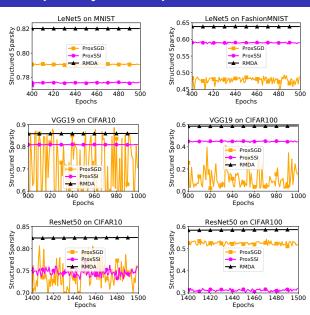
Our Work

- We propose RMDA: Regularized Dual Averaging + Momentum
- Variance reduction beyond finite-sum (for data augmentation) with low cost
- Guaranteed optimal structure identification in finite steps, by tools from partly smooth regularizers and manifold identification
- Superior empirical performance over state of the art for
 - Structured sparsity
 - Pruning

Results: Group Sparsity

- Group-LASSO norm:
 - Each channel in convolutional layers as one group
- All outputs from one neuron in fully-connected layers as one group
- Compare with the following state of the art methods for this task
 - RMDA: Our method
 - ProxSGD (Yang et al., 2019, ICLR'19): A simple proxMSGD algorithm.
 - ProxSSI (Deleu and Bengio, 2021): This is a special case of the adaptive proximal SGD framework of Yun et al. (2021, NeurIPS'21)
 - Dense: a dense baseline by SGD with momentum

Structured Sparsity v.s. Epochs



Final Structured Sparsity and Validation Accuracy

Algorithm	Validation acc.	Group sparsity	Validation acc.	Group sparsity
	LeNet5/MNIST		LeNet5/FashionMNIST	
Dense	$99.4 \pm 0.1\%$	_	$92.0 \pm 0.0\%$	_
ProxSGD	$99.1 \pm 0.0\%$	$76.6 \pm 2.3\%$	$91.0 \pm 0.2\%$	$50.5 \pm 2.7\%$
ProxSSI	$99.1 \pm 0.0\%$	$77.8 \pm 1.6\%$	$90.9 \pm 0.0\%$	$60.5 \pm 1.1\%$
RMDA	$99.1 \pm 0.1\%$	$79.8 \pm 1.6\%$	$91.4 \pm 0.1\%$	$66.2 \pm 1.7\%$
	VGG19/CIFAR10		VGG19/CIFAR100	
Dense	$94.0 \pm 0.1\%$	-	$74.6 \pm 0.2\%$	-
ProxSGD	$92.4 \pm 0.3\%$	$72.6 \pm 6.0\%$	$71.9 \pm 0.1\%$	$08.6 \pm 4.9\%$
ProxSSI	$92.5 \pm 0.0\%$	$81.1\pm0.2\%$	$66.2 \pm 0.4\%$	$46.4 \pm 1.4\%$
RMDA	$93.6 \pm 0.2\%$	$86.4 \pm 0.3\%$	$72.2 \pm 0.2\%$	$58.9 \pm 0.4\%$
	ResNet50/CIFAR10		ResNet50/CIFAR100	
Dense	$95.7 \pm 0.0\%$	_	$79.1 \pm 0.2\%$	_
ProxSGD	$92.4 \pm 0.1\%$	$76.8 \pm 4.1\%$	$75.5 \pm 0.5\%$	$51.8 \pm 0.3\%$
ProxSSI	$94.1 \pm 0.1\%$	$74.8 \pm 1.3\%$	$74.5 \pm 0.3\%$	$32.8 \pm 2.5\%$
RMDA	$94.3 \pm 0.0\%$	$83.0 \pm 0.5\%$	$76.1 \pm 0.5\%$	$57.7 \pm 3.8\%$

Comparison with Pruning

- ullet ℓ_1 norm for pruning/unstructured sparsity
- Compare RMDA with a state-of-the-art pruning method: RigL (Evci et al., 2020, ICML'20) by Google Brain/DeepMind
- ullet 1,000 epochs for both RMDA and RigL

	ResNet50	with CIFAR10	ResNet50	with CIFAR100
Algorithm	Sparsity	Accuracy	Sparsity	Accuracy
Dense baseline		94.81%		74.61%
RMDA	98.36%	93.78%	98.32%	74.32%
RigL	98.00%	93.41%	98.00%	70.88%

Code at https://www.github.com/zihsyuan1214/rmda

Full paper at https://openreview.net/pdf?id=mdUYT5QV00

See you at poster #6536