

Rethinking Goal-conditioned Supervised Learning and Its Connection to Offline RL

Rui Yang¹, Yiming Lu¹, Wenzhe Li¹, Hao Sun², Meng Fang³, Yali Du⁴, Xiu Li¹, Lei Han⁵, Chongjie Zhang¹

¹Tsinghua University, ²University of Cambridge, ³Eindhoven University of Technology,

⁴King's College London, ⁵Tencent Robotics X

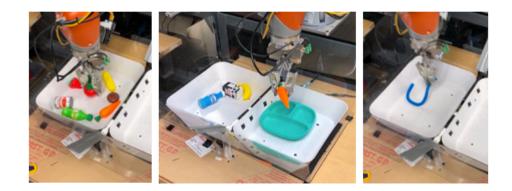
Background

• Goal-conditioned RL (GCRL) encourages agents to reach multiple goals and learn general policies

Background

• Goal-conditioned RL (GCRL) encourages agents to reach multiple goals and learn general policies

Current GCRL algorithms require intense online interactions (dangerous & expensive)



Background

• Goal-conditioned RL (GCRL) encourages agents to reach multiple goals and learn general policies

Current GCRL algorithms require intense online interactions (dangerous & expensive)

Solution: learning goal-conditioned policies from offline datasets

Formulation

- Offline Goal-conditioned RL (GCRL)
- Goal-augmented MDP: (S, A, G, P, r, γ)
- State-to-goal mapping $\phi: S \rightarrow G$,

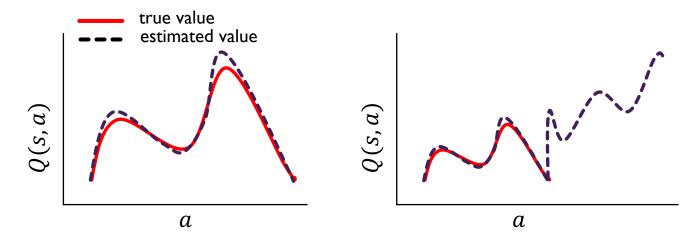
Formulation

- Offline Goal-conditioned RL (GCRL)
- Goal-augmented MDP: (S, A, G, P, r, γ)
- State-to-goal mapping $\phi: S \rightarrow G$,
- Reward function: $r(s_t, a_t, g) = \begin{cases} 1, & \|\phi(s_t) g\|_2^2 \le \epsilon \\ 0, & otherwise \end{cases}$
- Objective: learning goal-conditioned policies from offline dataset $D = \{(s_t, a_t, g, r_t)\}$ to maximize

$$J(\pi) = E_{s_0,g,\pi}[\Sigma_{k=0}^{\infty} \gamma^k r(s_{t+k}, a_{t+k}, g)]$$

Challenges

- Distribution Shift
- Learning with offline dataset ${\mathcal D}$ only guarantees predictions on the data distribution



Overestimation on OOD actions

$$\mathcal{B}^{\pi}Q(s,a) = r(s,a) + \gamma \mathbb{E}_{p(s'|s,a)} [\mathbb{E}_{\pi(a'|s')} [Q^{\pi}(s',a')]]$$

$$\pi = \arg\max_{\pi} \mathbb{E}_{s \sim D, \pi(a|s)} [Q(s,a)]$$

Challenges

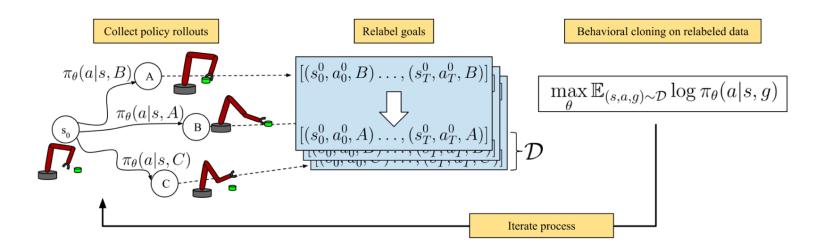
- Generalization
- GCRL needs to reach multiple goals rather than overfitting to a single one

- Multi-modality
- In the offline dataset, there are generally multiple valid trajectories from a state to a goal, which may hinder learning a good policy
- Sparse Reward
- When the data is collected by random policy, there is little learning information for offline GCRL

Solving Offline GCRL via Supervised Learning

- Goal-conditioned Supervised Learning (GCSL)
- Relabeling data similar to Hindsight Experience Replay
- Imitation learning on relabeled data

$$J_{GCSL}(\pi) = \mathbb{E}_{(s_t, a_t, \phi(s_i)) \sim D_{relabel}}[\log \pi(a_t | s_t, \phi(s_i))]$$



GCSL alleviates OOD actions and sparse rewards naturally

$$J_{GCSL}(\pi) = \mathbb{E}_{(s_t, a_t, \phi(s_i)) \sim D_{relabel}} [\log \pi(a_t | s_t, \phi(s_i))]$$

GCSL alleviates OOD actions and sparse rewards naturally

$$J_{GCSL}(\pi) = \mathbb{E}_{(s_t, a_t, \phi(s_i)) \sim D_{relabel}}[\log \pi(a_t | s_t, \phi(s_i))]$$

 But GCSL only considers the last-step reward and weights all relabeled transitions equally

$$\mathbb{E}[\log \pi(a|s,g')] \qquad \qquad \mathbb{E}[r(s_T,a_T,g)]$$

GCSL alleviates OOD actions and sparse rewards naturally

$$J_{GCSL}(\pi) = \mathbb{E}_{(s_t, a_t, \phi(s_i)) \sim D_{relabel}} [\log \pi(a_t | s_t, \phi(s_i))]$$

 But GCSL only considers the last-step reward and weights all relabeled transitions equally

$$\mathbb{E}[\log \pi(a|s,g')] \qquad \qquad \mathbb{E}[r(s_T,a_T,g)]$$

We tackle this problem via weighted supervised learning

ng
$$\mathbb{E}[\Sigma_t \gamma^t r(s_t, a_t, g)]$$

GCSL alleviates OOD actions and sparse rewards naturally

$$J_{GCSL}(\pi) = \mathbb{E}_{(s_t, a_t, \phi(s_i)) \sim D_{relabel}} [\log \pi(a_t | s_t, \phi(s_i))]$$

 But GCSL only considers the last-step reward and weights all relabeled transitions equally

$$\mathbb{E}[\log \pi(a|s,g')]$$
 $\mathbb{E}[r(s_T,a_T,g)]$ We tackle this problem via weighted supervised learning

$$\mathbb{E}[\mathbf{w}\log\pi(a|s,g')] \qquad \qquad \mathbb{E}[\Sigma_t \gamma^t r(s_t,a_t,g)]$$

Weighted Goal-conditioned Supervised Learning (WGCSL)

$$J_{WGCSL}(\pi) = E_{g \sim p(g), \tau \sim \pi_b(\cdot | g), t \sim [0, T], i \sim [t, T]} [w_{i,t} log \pi_{\theta}(a_t | s_t, \phi(s_i))]$$

• $w_{i,t}$ includes 3 parts:

Weighted Goal-conditioned Supervised Learning (WGCSL)

$$J_{WGCSL}(\pi) = E_{g \sim p(g), \tau \sim \pi_b(\cdot | g), t \sim [0, T], i \sim [t, T]} [w_{i,t} log \pi_{\theta}(a_t | s_t, \phi(s_i))]$$

- $w_{i,t}$ includes 3 parts:
- ① Discounted Relabeling Weight (DRW): γ^{i-t}

Theorem 1. Assume a finite-horizon discrete MDP, a stochastic discrete policy π which selects actions with non-zero probability and a sparse reward function $r(s_t, a_t, g) = 1[\phi(s_t) = g]$, where ϕ is the state-to-goal mapping and $1[\phi(s_t) = g]$ is an indicator function. Given trajectories $\tau = (s_1, a_1, \cdots, s_T, a_T)$ and discount factor $\gamma \in (0, 1]$, let the weight $w_{t,i} = \gamma^{i-t}, t \in [1, T], i \in [t, T]$, then the following bounds hold:

$$J_{surr}(\pi) \ge T \cdot J_{WGCSL}(\pi) \ge T \cdot J_{GCSL}(\pi),$$

where $J_{surr}(\pi) = \frac{1}{T} \mathbb{E}_{g \sim p(g), \tau \sim \pi_b(\cdot|g)} \left[\sum_{t=1}^T \log \pi(a_t|s_t, g) \sum_{i=t}^T \gamma^{i-1} \cdot \mathbb{I}[\phi(s_i) = g] \right]$ is a surrogate function of $J(\pi)$.

Weighted Goal-conditioned Supervised Learning (WGCSL)

$$J_{WGCSL}(\pi) = E_{g \sim p(g), \tau \sim \pi_b(\cdot | g), t \sim [0, T], i \sim [t, T]} [w_{i,t} log \pi_{\theta}(a_t | s_t, \phi(s_i))]$$

- $w_{i,t}$ includes 3 parts:
- ① Discounted Relabeling Weight (DRW): γ^{i-t}
- ② Goal-conditioned Exponential Advantage Weight (GEAW): $\exp_{clip} \left(A(s_t, a_t, \phi(s_i)) \right)$

Exponential advantage weight is a commonly used technique in offline RL

$$\pi_{k+1} = \underset{\pi \in \Pi}{\operatorname{arg \, max}} \ \mathbb{E}_{\mathbf{a} \sim \pi(\cdot | \mathbf{s})} [A^{\pi_k}(\mathbf{s}, \mathbf{a})]$$

s.t. $D_{\mathrm{KL}}(\pi(\cdot | \mathbf{s}) || \pi_{\beta}(\cdot | \mathbf{s})) \leq \epsilon.$

Weighted Goal-conditioned Supervised Learning (WGCSL)

$$J_{WGCSL}(\pi) = E_{g \sim p(g), \tau \sim \pi_b(\cdot | g), t \sim [0, T], i \sim [t, T]} [w_{i,t} log \pi_{\theta}(a_t | s_t, \phi(s_i))]$$

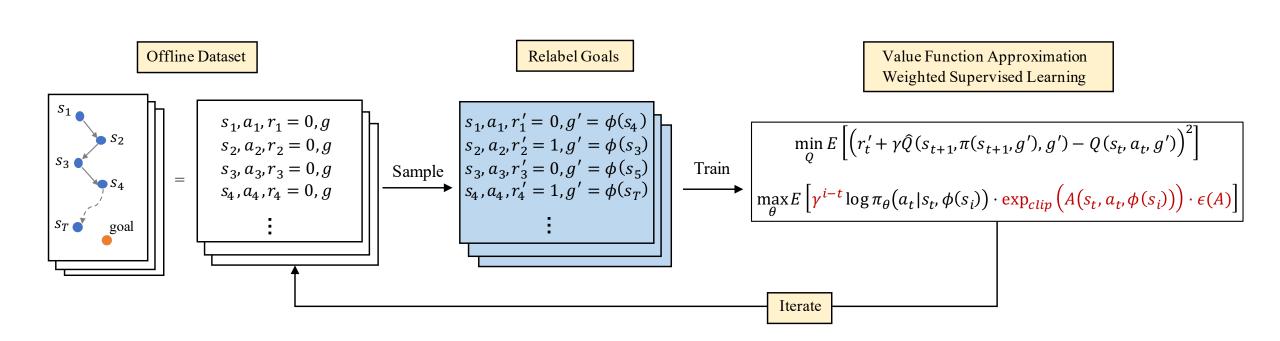
- $w_{i,t}$ includes 3 parts:
- ① Discounted Relabeling Weight (DRW): γ^{i-t}
- ② Goal-conditioned Exponential Advantage Weight (GEAW): $\exp_{clip} \left(A(s_t, a_t, \phi(s_i)) \right)$
- ③ Best-Advantage Weight (BAW): $\epsilon \left(A(s_t, a_t, \phi(s_i)) \right) = \begin{cases} 1, & A(s_t, a_t, \phi(s_i)) > \hat{A} \\ \epsilon_{min}, & otherwise \end{cases}$

BAW selects the data to alleviate the multi-modality problem

In our implementation, $\epsilon_{min} = 0.05$

Curriculum learning: \hat{A} is set as N percentile of advantage values, N gradually increases from 0 to 80

Weighted Goal-conditioned Supervised Learning (WGCSL)



- Experimental Settings
- Ten sparse reward goal-conditioned tasks
- Offline datasets are collected by online-trained HER agents (namely 'expert') and random policy ('random')
- 2×10^6 transitions for 4 harder tasks and 1×10^5 for others

Data Set	PointReach	PointRooms	Reacher	SawyerReach	SawyerDoor
Random	1.33	1.32	1.25	2.26	4.30
Expert	32.22	29.11	27.56	30.93	27.01
Data Set	FetchReach	FetchPush	FetchSlide	FetchPick	HandReach
Random	0.71	3.19	0.16	1.76	0.00
Expert	36.69	31.35	1.58	17.44	0.50

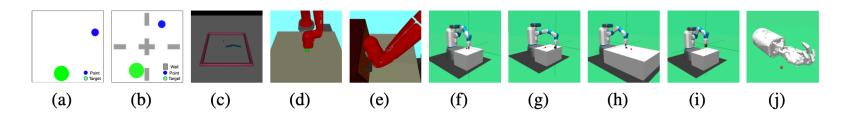
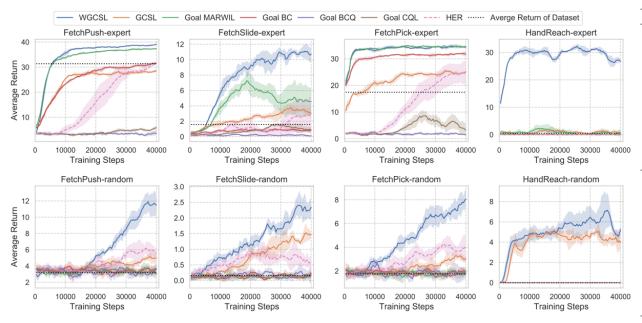


Figure 3: Goal-conditioned tasks: (a) PointReach, (b) PointRooms, (c) Reacher, (d) SawyerReach, (e) SawyerDoor, (f) FetchReach, (g) FetchPush, (h) FetchSlide, (i) FetchPick, (j) HandReach.

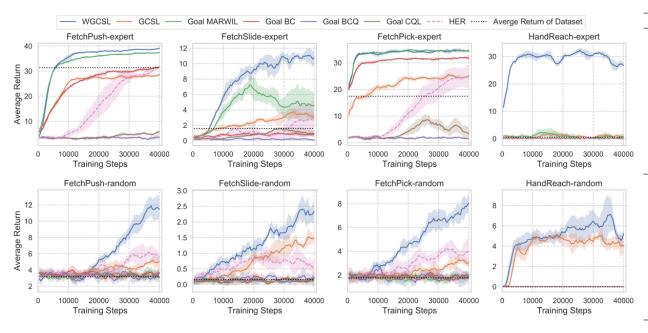
Experiment Results



Task Name	WGCSL	GCSL	g-MARWIL	g-BC	g-BCQ	g-CQL	HER
PointReach-e	44.40 ±0.14	39.27 ± 0.48	42.95 ±0.15	39.36 ± 0.48	40.42 ± 0.57	39.75 ± 0.33	24.68 ± 7.07
PointRooms-e	36.15 ± 0.85	33.05 ± 0.54	36.02 ± 0.57	33.17 ± 0.52	32.37 ± 1.77	30.05 ± 0.38	12.41 ± 8.59
Reacher-e	40.57 ± 0.20	36.42 ± 0.30	38.89 ± 0.17	35.72 ± 0.37	39.57 ± 0.08	42.23 ± 0.12	8.27 ± 4.33
SawyerReach-e	40.12 ± 0.29	33.65 ± 0.38	37.42 ± 0.31	32.91 ± 0.31	39.49 ± 0.33	19.33 ± 0.45	26.48 ± 6.23
SawyerDoor-e	42.81 ± 0.23	35.67 ± 0.09	40.03 ± 0.16	35.03 ± 0.20	40.13 ± 0.75	45.86 \pm 0.11	44.09 ± 0.65
FetchReach-e	46.33 ± 0.04	41.72 ± 0.31	45.01 ± 0.11	42.03 ± 0.25	35.18 ± 3.09	1.03 ± 0.26	46.73 ±0.14
FetchPush-e	39.11 ±0.17	28.56 ± 0.96	37.42 ±0.22	31.56 ± 0.61	3.62 ± 0.96	5.76 ± 0.83	31.53 ± 0.47
FetchSlide-e	10.73 ± 1.09	3.05 ± 0.62	4.55 ± 1.79	0.84 ± 0.35	0.12 ± 0.10	0.86 ± 0.38	2.86 ± 2.40
FetchPick-e	34.37 ± 0.51	25.22 ± 0.85	34.56 ±0.54	31.75 ± 1.19	1.46 ± 0.29	3.23 ± 2.52	$24.79 \pm \scriptstyle{4.49}$
HandReach-e	26.73 ± 1.20	0.57 ± 0.68	$0.81 \pm \scriptstyle{1.59}$	0.06 ± 0.03	0.04 ± 0.04	0.00 ± 0.00	0.05 ± 0.07
PointReach-r	44.30 ±0.24	30.80 ± 1.74	7.67 ± 1.97	1.37 ± 0.09	1.78 ± 0.14	1.52 ± 0.26	45.17 ±0.13
PointRooms-r	35.52 ± 0.80	24.10 ± 0.81	4.67 ± 0.80	1.43 ± 0.18	1.61 ± 0.17	1.29 ± 0.37	36.16 ±1.16
Reacher-r	41.12 ± 0.11	22.52 ± 0.77	15.35 ± 1.95	1.66 ± 0.30	2.52 ± 0.28	2.54 ± 0.17	34.48 ± 8.12
SawyerReach-r	41.05 \pm 0.19	14.86 ± 3.27	11.30 ± 2.12	0.58 ± 0.21	1.36 ± 0.14	1.18 ± 0.29	39.27 ±2.16
SawyerDoor-r	36.82 ±3.20	25.86 ± 1.12	25.33 ± 1.46	3.73 ± 0.83	9.82 ± 1.08	4.36 ± 0.86	28.85 ± 1.99
FetchReach-r	46.50 ± 0.09	38.26 ± 0.24	30.86 ± 8.49	0.84 ± 0.31	0.19 ± 0.04	0.97 ± 0.23	47.01 ± 0.07
FetchPush-r	11.48 ± 1.03	5.01 ± 0.64	3.01 ± 0.71	3.14 ± 0.25	3.60 ± 0.42	3.67 ± 0.65	5.65 ± 0.64
FetchSlide-r	2.34 ±0.28	1.47 ± 0.12	0.19 ± 0.11	0.25 ± 0.13	$0.20{\scriptstyle~ \pm 0.29}$	0.15 ± 0.09	0.59 ± 0.30
FetchPick-r	8.06 \pm 0.71	3.05 ± 0.42	2.01 ± 0.46	1.84 ± 0.17	1.84 ± 0.58	1.73 ± 0.17	3.91 ± 1.29
HandReach-r	5.23 ±0.55	3.96 ±0.81	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.01

WGCSL outperforms other baselines consistently

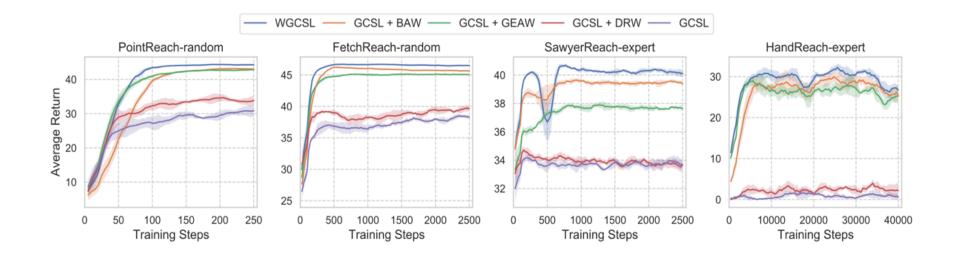
Experiment Results



	****				D 00		
Task Name	WGCSL	GCSL	g-MARWIL	g-BC	g-BCQ	g-CQL	HER
PointReach-e	44.40 ±0.14	39.27 ± 0.48	42.95 ±0.15	39.36 ± 0.48	40.42 ± 0.57	39.75 ± 0.33	24.68 ± 7.07
PointRooms-e	36.15 ± 0.85	33.05 ± 0.54	36.02 ± 0.57	33.17 ± 0.52	32.37 ± 1.77	30.05 ± 0.38	12.41 ± 8.59
Reacher-e	40.57 ± 0.20	36.42 ± 0.30	38.89 ± 0.17	35.72 ± 0.37	39.57 ± 0.08	42.23 ± 0.12	8.27 ± 4.33
SawyerReach-e	40.12 ± 0.29	33.65 ± 0.38	37.42 ± 0.31	32.91 ± 0.31	39.49 ± 0.33	19.33 ± 0.45	26.48 ± 6.23
SawyerDoor-e	42.81 ± 0.23	35.67 ± 0.09	40.03 ± 0.16	35.03 ± 0.20	40.13 ± 0.75	45.86 \pm 0.11	44.09 ± 0.65
FetchReach-e	46.33 ± 0.04	41.72 ± 0.31	45.01 ± 0.11	42.03 ± 0.25	35.18 ± 3.09	1.03 ± 0.26	46.73 ±0.14
FetchPush-e	39.11 ±0.17	28.56 ± 0.96	37.42 ±0.22	31.56 ± 0.61	3.62 ± 0.96	5.76 ± 0.83	31.53 ± 0.47
FetchSlide-e	10.73 ± 1.09	3.05 ± 0.62	4.55 ± 1.79	0.84 ± 0.35	0.12 ± 0.10	0.86 ± 0.38	2.86 ± 2.40
FetchPick-e	34.37 ± 0.51	25.22 ± 0.85	34.56 ± 0.54	31.75 ± 1.19	1.46 ± 0.29	3.23 ± 2.52	$24.79 \pm \scriptstyle{4.49}$
HandReach-e	26.73 ± 1.20	0.57 ± 0.68	0.81 ± 1.59	0.06 ± 0.03	$0.04 \pm \scriptstyle{0.04}$	0.00 ± 0.00	0.05 ± 0.07
PointReach-r	44.30 ±0.24	30.80 ± 1.74	7.67 ± 1.97	1.37 ± 0.09	1.78 ± 0.14	1.52 ± 0.26	45.17 ±0.13
PointRooms-r	35.52 ± 0.80	24.10 ± 0.81	4.67 ± 0.80	1.43 ± 0.18	1.61 ± 0.17	1.29 ± 0.37	36.16 ±1.16
Reacher-r	41.12 ± 0.11	22.52 ± 0.77	15.35 ± 1.95	1.66 ± 0.30	2.52 ± 0.28	2.54 ± 0.17	34.48 ± 8.12
SawyerReach-r	41.05 \pm 0.19	14.86 ± 3.27	11.30 ± 2.12	0.58 ± 0.21	1.36 ± 0.14	1.18 ± 0.29	39.27 ±2.16
SawyerDoor-r	36.82 ±3.20	25.86 ± 1.12	25.33 ± 1.46	3.73 ± 0.83	9.82 ± 1.08	4.36 ± 0.86	28.85 ± 1.99
FetchReach-r	46.50 ± 0.09	38.26 ± 0.24	30.86 ± 8.49	0.84 ± 0.31	0.19 ± 0.04	0.97 ± 0.23	47.01 ± 0.07
FetchPush-r	11.48 ± 1.03	5.01 ± 0.64	3.01 ± 0.71	3.14 ± 0.25	3.60 ± 0.42	3.67 ± 0.65	5.65 ± 0.64
FetchSlide-r	2.34 ±0.28	1.47 ± 0.12	0.19 ± 0.11	0.25 ± 0.13	$0.20{\scriptstyle~ \pm 0.29}$	0.15 ± 0.09	0.59 ± 0.30
FetchPick-r	8.06 \pm 0.71	3.05 ± 0.42	2.01 ± 0.46	1.84 ± 0.17	1.84 ± 0.58	1.73 ± 0.17	3.91 ± 1.29
HandReach-r	5.23 ±0.55	3.96 ±0.81	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.01

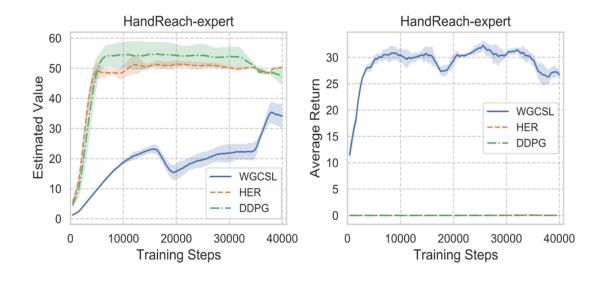
- WGCSL outperforms other baselines consistently
- WGCSL can even learn reasonable policies from random datasets

Ablation Studies



- BAW, GEAW, DRW are all effective on top of GCSL
- · Learned policy can be improved by combining all three weights.

Value Estimation



- DDPG and HER exhibit large estimated values
- WGCSL has a more robust value approximation

Summary

- We propose WGCSL, a weighted supervised learning method for offline goal-conditioned RL
- We provide a benchmark and offline datasets
- WGCSL outperforms current approaches significantly in learning efficiency and performance

Summary

- We propose WGCSL, a weighted supervised learning method for offline goal-conditioned RL
- We provide a benchmark and offline datasets
- WGCSL outperforms current approaches significantly in learning efficiency and performance

Please refer to our paper for more details and analysis of our method

