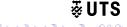
Towards Deepening Graph Neural Networks: A GNTK-based Optimization Perspective

Wei Huang¹, Yayong Li¹, Weitao Du³, Jie Yin², Richard Xu¹, Ling Chen¹, Miao Zhang⁴

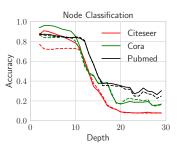
¹University of Technology Sydney, Australia ²The University of Sydney, Australia ³Northwestern University, USA ⁴Aalborg University, Denmark

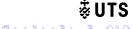
03/2022



Motivation

- Graph Neural Networks (GNNs) have shown incredible abilities to learn node or graph representations and achieved superior performance on node classification, graph classification and link prediction, etc.
- Most GNNs achieve their best only with a shallow depth, e.g., 2 or 3 layers, and their performance on those tasks would degrade as the number of layers grows.



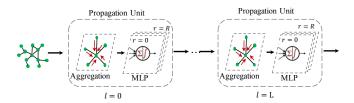


Motivation

- It remains elusive how to theoretically understand why deep GCNs fail to optimize
- Existing theoretical investigation on GNNs focus mainly on expressivity, which
 measures the complexity of functions that can be represented by a neural network.
- Research Questions:
 - Can we theoretically characterize the trainability of graph neural networks with respect to depth, thus understanding why deep GCNs fail to generalize?
 - Can we further design an algorithm to facilitate deeper GCNs, benefiting from our theoretical investigation?

Graph Neural Tangent Kernel

- It has been shown that the training process of an infinitely-wide neural network with gradient descent training can be captured by its neural tangent kernel (NTK).
- We leverage the GNTK techniques of infinitely-wide networks to investigate whether ultra-wide GNNs are trainable in the large depth
- In particular, we aim to characterize the behavior of GNTK matrix $\Theta_{(r)}^{(l)}(G)$, as the depth goes to infinity.

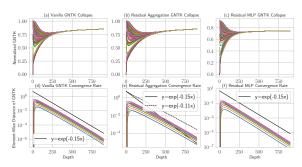


TOWARDS DEEPENING GRAPH NEURAL NETWORKS

Main Theoretical Results

- The aggregation operation corresponds to a probability transition matrix $\mathcal{A}(G)$ in the GNTK formulation. The corresponding stationary distribution vector is denoted as $\vec{\pi}(G)$.
- There exist constants $0 < \alpha < 1$ and C > 0, and constant vectors \vec{v}, \vec{v}' depending on the number of MLP iterations R, such that

$$\left|\Theta_{(r)}^{(l)}(u, u') - \vec{\pi}(G)^T \left(Rl\vec{v} + \vec{v}'\right)\right| \le C\alpha^l$$



Critical DropEdge

- To better resolve the problem of exponential convergence rate of trainability, we need to look deeper into the root cause of the problem the transition matrix corresponding to the aggregation operation.
- A necessary condition for matrix $\mathcal{A}(G)$ to be a probability transition matrix is that graph G is connected. Thus, breaking the connectivity condition is a promising way of better solving the exponential decay problem.
- One method is to perform edge sampling guided by the critical percolation theory. Suppose a random graph \hat{G} has n nodes with a constant edge probability p.
 - If p < p_c, then almost every random graph is such that its largest component is of size O(log n);
 - If $p > p_c$, the random graph has a giant component of size $(1 \alpha_p + o(1))n$, where $\alpha_p < 1$;
 - $p = p_c$, then the maximal size of a component of almost every graph has order $n^{2/3}$.

Experimental Results

Datasets	Methods	4-layer	8-layer	16-layer	32-layer
Cora	GCN DropEdge DGN C-DropEdge	79.8 ± 1.1 82.2 ± 0.7 82.0 ± 0.9 82.5 ± 0.7	73.2 ± 2.7 82.0 ± 0.9 80.2 ± 0.8 82.3 ± 0.6	36.3 ± 13.8 82.2 ± 0.7 77.7 ± 1.0 82.4 ± 0.8	20.1 ± 2.4 82.1 ± 0.5 73.0 ± 0.8 82.6 ± 0.9
Citeseer	GCN DropEdge DGN C-DropEdge	61.2 ± 3.0 70.2 ± 1.0 69.0 ± 0.9 70.8 ± 0.6	50.2 ± 5.7 70.8 ± 1.1 66.5 ± 1.1 70.9 ± 0.9	30.8 ± 2.2 70.7 ± 1.0 62.9 ± 1.2 71.0 ± 1.0	21.7 ± 3.0 70.2 ± 0.8 63.2 ± 0.9 70.7 ± 0.9
Pubmed	GCN Dropedge DGN C-DropEdge	77.4 ± 0.7 77.6 ± 1.4 78.2 ± 1.0 78.0 ± 0.4	57.2 ± 8.4 77.3 ± 1.3 77.8 ± 1.2 77.9 ± 1.0	39.5 ± 10.3 76.7 ± 1.3 77.2 ± 1.3 77.2 ± 1.0	36.3 ± 8.4 77.2 ± 1.3 77.0 ± 1.1 77.8 ± 1.0
Physics	GCN Dropedge DGN C-DropEdge	90.2 ± 0.9 91.6 ± 0.8 92.2 ± 1.0 91.9 ± 0.7	83.5 ± 2.2 91.5 ± 0.7 86.4 ± 0.7 91.7 ± 0.6	41.6 ± 6.2 91.2 ± 0.5 83.4 ± 0.6 92.0 ± 0.4	28.8 ± 9.4 91.3 ± 0.8 83.2 ± 0.8 91.6 ± 0.6

