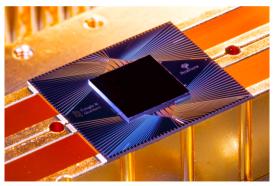
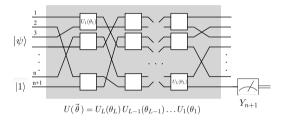
Critical Points in Quantum Generative Models


Eric R. Anschuetz

MIT Center for Theoretical Physics

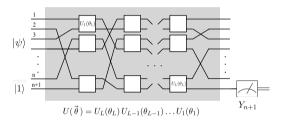
ICLR 2022


Quantum Computing

- Quantum computers believed to be superpolynomially more efficient than "classical" computers in solving certain tasks
- Currently in an era of noisy, intermediate-scale quantum devices
- ► What can they do that's useful?

Quantum Generative Models

▶ Quantum neural network¹—generalization of "classical" neural networks

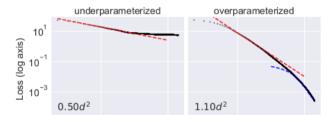

▶ Provably more expressive than classical counterparts²

¹Farhi and Neven 2018.

²Gao et al. 2021.

Quantum Generative Models

▶ Quantum neural network¹—generalization of "classical" neural networks

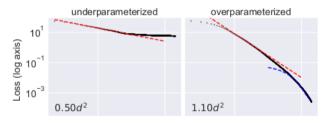

- ▶ Provably more expressive than classical counterparts²
- ► Are these models trainable?

¹Farhi and Neven 2018.

²Gao et al. 2021.

Untrainability Results

- Analytic results: gradient vanishes exponentially in model size for deep models³
- Numerical results: poor local minima quality in shallow models⁴, in contrast with typical behavior of local minima in neural networks⁵


³McClean et al. 2018; Cerezo et al. 2021.

⁴Kiani, Lloyd, and Maity 2020.

⁵Choromanska et al. 2015.

Untrainability Results

- ► Analytic results: gradient vanishes exponentially in model size for deep models³
- ▶ Numerical results: poor local minima quality in shallow models⁴, in contrast with typical behavior of local minima in neural networks⁵

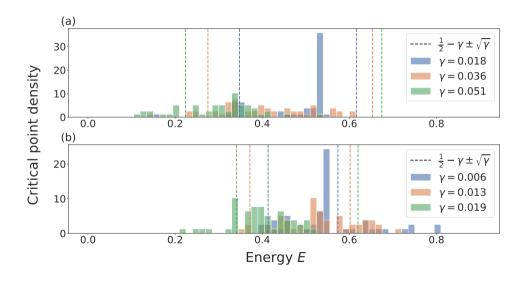
Can these numerical results be proven?

³McClean et al. 2018; Cerezo et al. 2021.

⁴Kiani, Lloyd, and Maity 2020.

⁵Choromanska et al. 2015.

Overview


We show analytically:

The existence of this trainability phase transition at $\gamma=1$, governed by "order parameter"

$$\gamma \sim \frac{p}{2^{n+1}}$$

- ▶ The asymptotic distribution of local minima in these models
- Heuristic reasons why certain classes of models may not experience this poor quality of local minima

Numerical Confirmation

Conclusion

- Even shallow quantum models can be difficult to train!
- ▶ Is there a way to show similar results for more general quantum models?

Thank You!

Thank you!