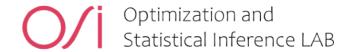
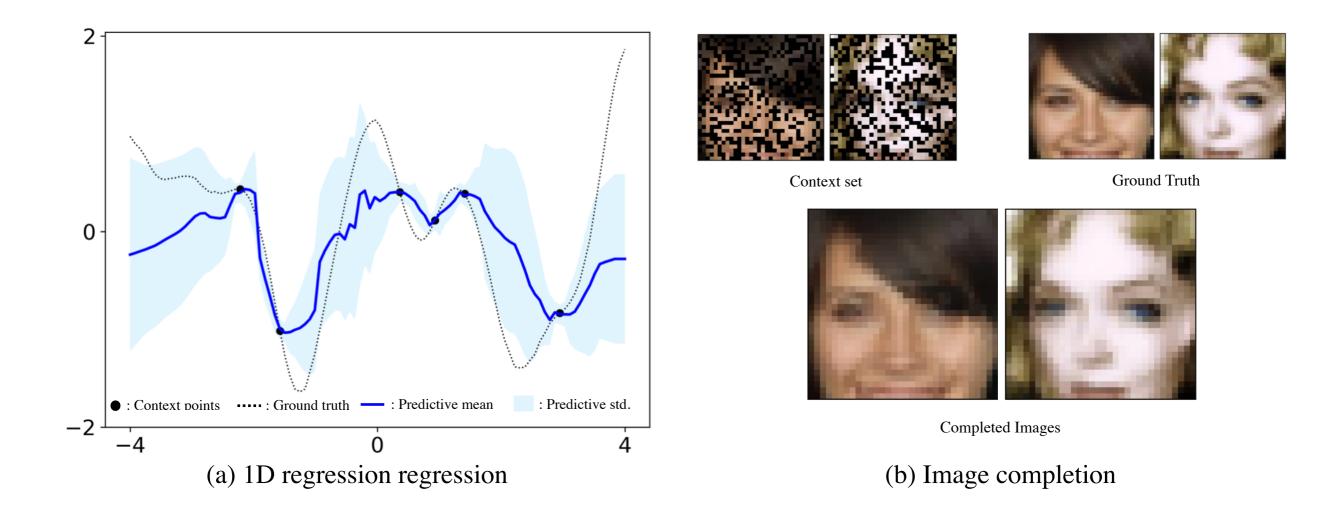
Neural Processes with Stochastic Attention

: Paying more attention to the context dataset

Mingyu Kim, Kyeongryeol Go and Se-young Yun

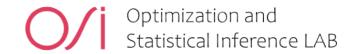
Neural Processes (NPs)

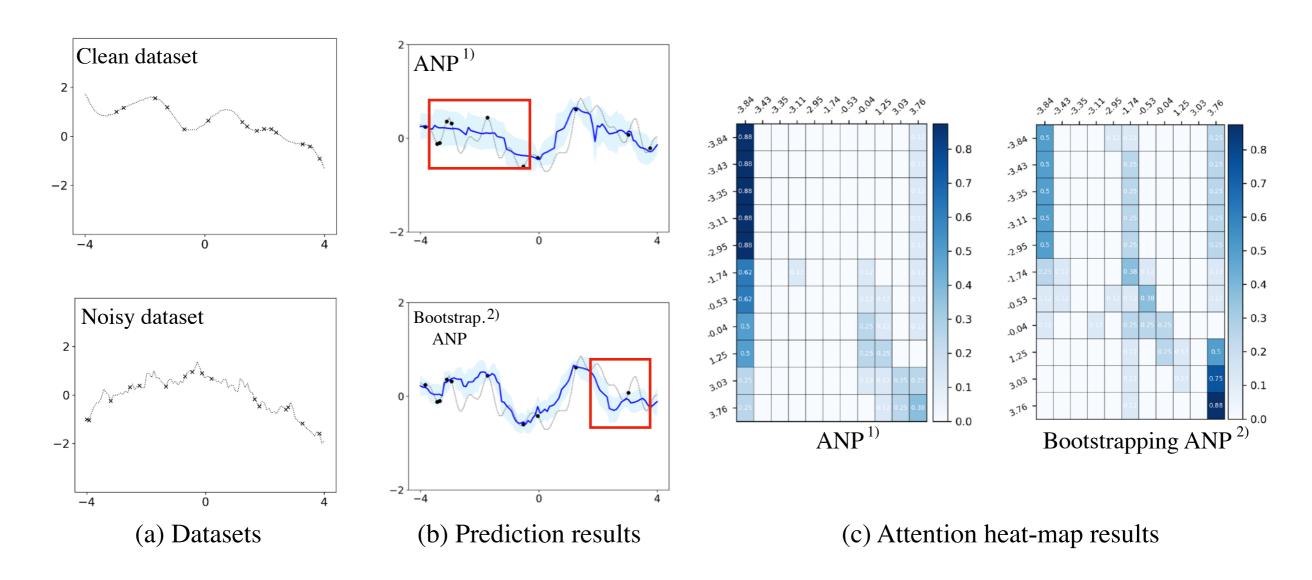




- Neural Processes implicitly describe a large class of stochastic processes with neural networks.
- It complete unseen target points considering a given context dataset without huge computation.
- Attention mechanism is mostly used for context set encoding in terms of performance.

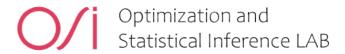
Noisy situation



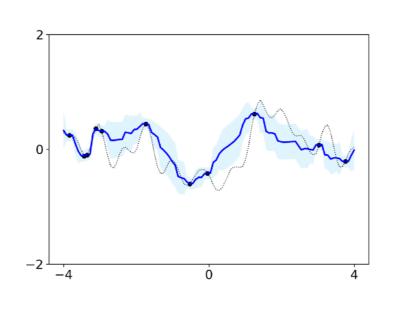


- While existing NPs do well in terms of prediction, they do not properly capture context data points.
- When we analyze attention heat-maps, we identify that the baselines are far from the ideal case. The best pattern is diagonal because all feature values are arranged in ascending order.

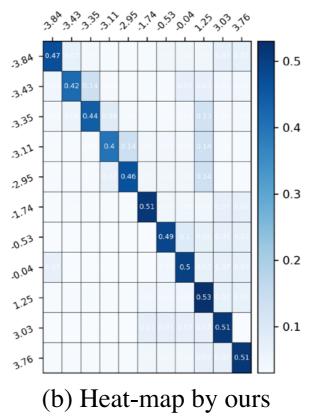
Neural Processes with Stochastic Attention

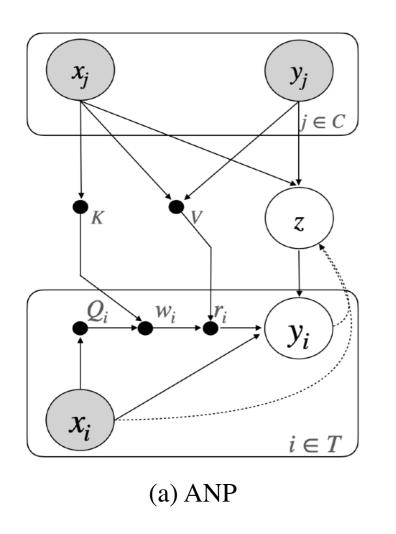


- For stochastic attention, we employ Bayesian Attention Modules, which enable completely amortized variational inference.
- We claims for the first time, using the information theory framework, that critical conditions for contextual embeddings in NPs are independent of target features and close to contextual datasets.
- We show that proposed model substantially outperforms conventional NPs in typical metaregression problems.



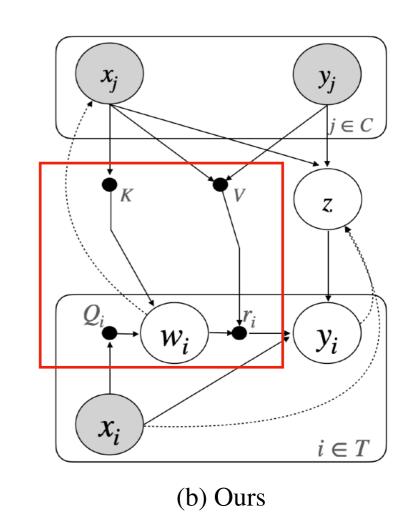
(a) 1D regression by ours





$$w_{i,j} = \operatorname{softmax}\left(\frac{q_i^T k_j}{\sqrt{d_k}}\right)$$

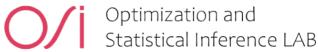
: Deterministic variables: Stochastic variables: Generation: Inference



- Attention weights sampled from the Weibull distribution, satisfying non-negative values, $q(w_i | x_i, X_c)$.
- The prior distribution is the Gamma distribution using only the context dataset, $q(w_i|X_c)$

***** key contextual prior

• The attention weights strongly preserve significant amounts of context information by decreasing $KL[q(w_i|x_i,X_c)|q(w_i|X_c)]$



• As we reveal that (1) is bounded, we achieve that NPs learn contextual embeddings that are independent of target features (noisy situation) and close to ideal case.

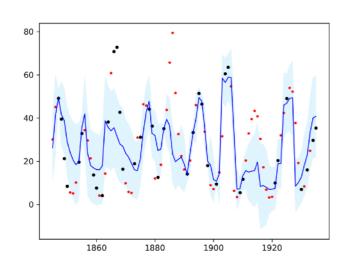
Theorem 1.
$$\mathcal{L}_{\mathcal{T}_k}(\phi,\theta) = \sum_{i=1}^{N} \left[\log p_\theta(y_i|x_i,z,r_i) - \mathsf{KL} \left(q_\phi(w_i|x_i,X_c) \, | \, q_\phi(w_i|X_c) \right) \right] - \mathsf{KL} \left(q_\phi(z|X,Y) \, | \, q_\phi(z|X_c,Y_c) \right)$$

$$\mathcal{L}_{\mathcal{T}_k}(\phi,\theta) \leq I(y_i;\mathcal{D} \, | \, x_i) - I(Z,x_i|\mathcal{D})$$

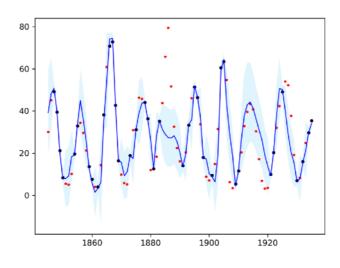
$$\text{where, Z means representation of context dataset and \mathcal{D} is a context dataset$$

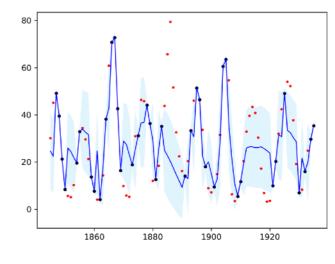
- We maximize (1) that the typical NPs objective function and KLD of Stochastic attentions.
 - $I(y_i; \mathcal{D} \mid x_i)$: Measure to identify that NPs is adapted to a novel task.
 - $I(Z, x_i | \mathcal{D})$: If context representation Z have totally different information against the target feature x_i given the context dataset \mathcal{D} , It can be 0.

Experiments: Sim2Real



(a) Bootstrapping ANP





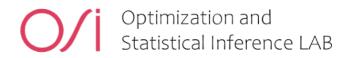
(c) Ours

* These figures show prediction results when all models trained on noisy situation

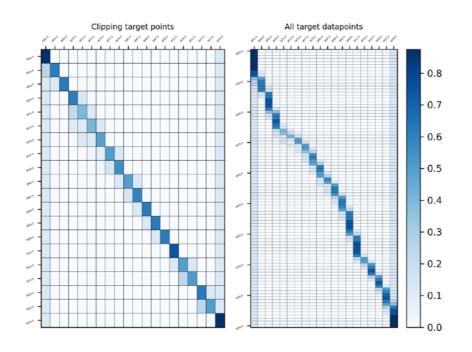
	Clean situation		Noisy situation		
	context	target	context	Target	
ANP	-1.756	-3.742	-0.634	-1.962	
Bootstrapping ANP	2.451	-3.382	-1.183	-2.008	
ConvCNP 4)	1.758	-0.431	1.879	-0.205	
Ours	2.429	-1.766	2.699	-0.076	

Metric: Loglikelihood

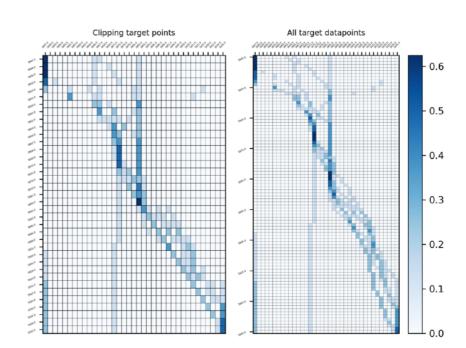
Experiments: Sim2Real



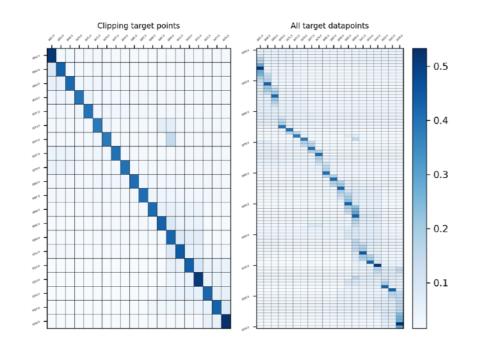
Trained on a clean dataset

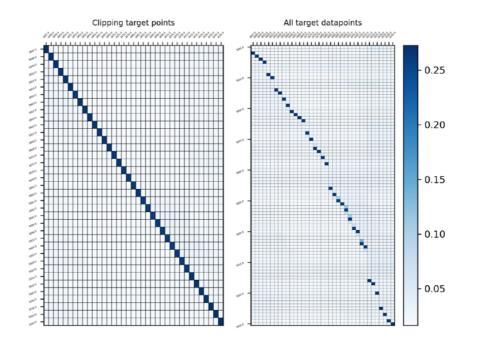


Trained on a noisy dataset



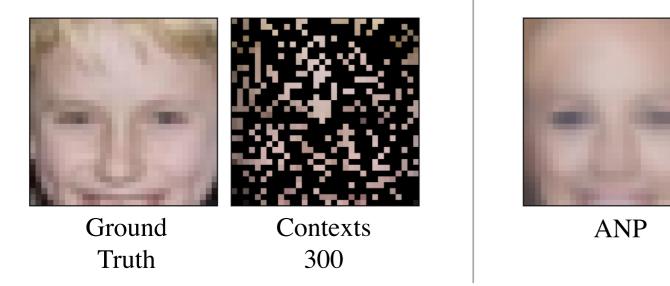
(a) Bootstrapping ANP

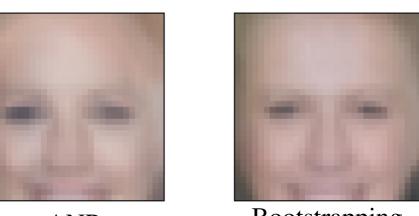




8

Experiments: Image Completion





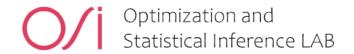
Ours

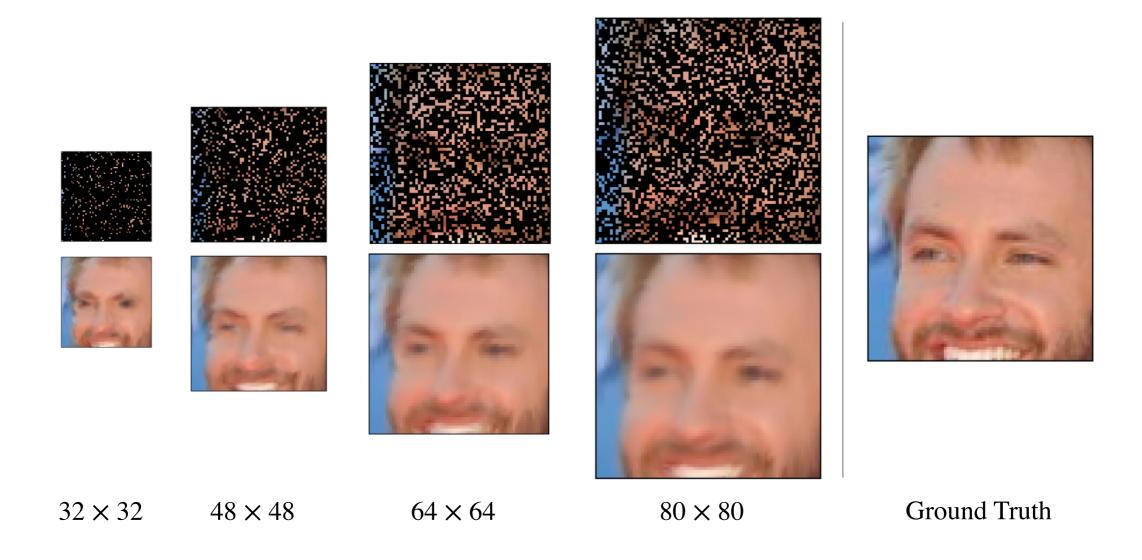
Bootstrapping ANP

- Our model accurate capture the form of colored hair, but other baselines do not.
- Our model outperforms other baselines in terms of quantitative analysis.

	Context	Target				
		Context: 50	Context: 100	Context: 300	Context: 500	
ANP	3.100	2.492	2.806	3.02	3.06	
Bootstrapping ANP	3.172	2.453	2.837	3.095	3.145	
Ours	4.119	2.653	3.21	3.787	3.948	

Experiments: Image Completion





- The training dataset consists of the CelebA images with a size of 32×32 . The completed images range in size from 32×32 to 80×80 . Each image is completed with 0.3 of the overall pixels.
- We identify that ours completes images that are higher resolution than the training images.

Conclusion

• We claims the conditions for contextual embeddings in NPs are independent of target features and close to contextual datasets via information theory.

• The Neural processes with stochastic attention outperform previous baselines

• We reveal that our attention weights of our model are more stable than previous model in noisy situations.