DeepMind

Learning Optimal Conformal Classifiers

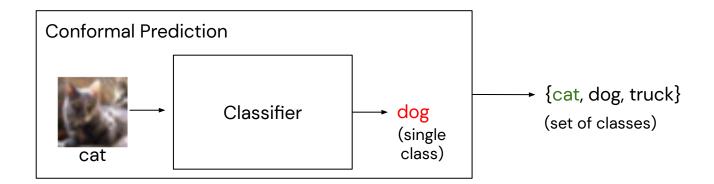
David Stutz

Krishnamurthy (Dj) Dvijotham

Ali Taylan Cemgil Arnaud Doucet

Overview and Motivation: Conformal Training

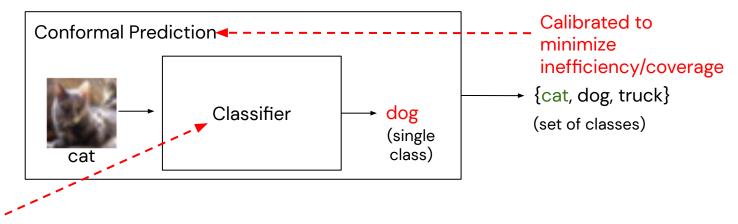
Conformal prediction as post-training wrapper provides coverage guarantee:



- → True class is in the predicted confidence set with user-specified probability!
 - Number of predicted classes = inefficiency

Overview and Motivation: Conformal Training

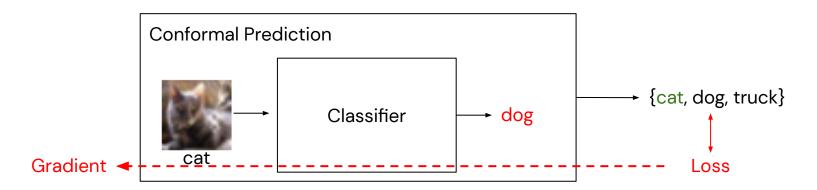
Conformal prediction as post-training wrapper provides marginal guarantee:



Trained with cross-entropy loss

Overview and Motivation: Conformal Training

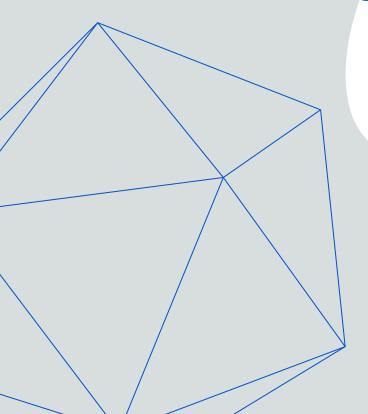
Conformal training = take conformal predictor into account during training:



- Optimize arbitrary objectives defined on confidence sets
 - Obtain guaranteed coverage using any conformal predictor after training.

DeepMind

Learning Optimal Conformal Classifiers



- Conformal Prediction
- Conformal Training
- Experimental Results
- Conclusion

Paper:

arxiv.org/abs/2110.09192

Conformal Prediction

For model $\pi_{\theta,y} \approx p(y|x)$, construct confidence sets $C_{\theta}(x) \subseteq [K] = \{1, \dots, K\}$ such that:

$$P(y \in C_{\theta}(x)) \ge 1 - \alpha$$

ullet confidence level lpha user-specified

Conformal Prediction

For model $\pi_{\theta,y} \approx p(y|x)$, construct confidence sets $C_{\theta}(x) \subseteq [K] = \{1, \dots, K\}$ such that:

$$P(y \in C_{\theta}(x)) \ge 1 - \alpha$$

- ullet confidence level lpha user-specified
- inefficiency = average confidence set size $|C_{\theta}(x)|$ minimized

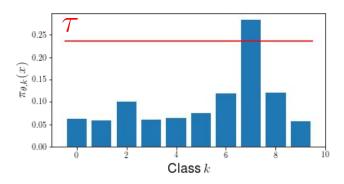
Example: Threshold Conformal Predictor

Two steps: prediction (test time) and calibration steps.

1. Prediction: define how confidence sets $C_{ heta}(x)$ are constructed,

$$C_{\theta}(x) := \{k \in [K] : E(x,k) := \pi_{\theta,k}(x) \ge \tau\}$$

with $E(x,k) := \pi_{\theta,k}(x)$ called conformity scores.



Example: Threshold Conformal Predictor

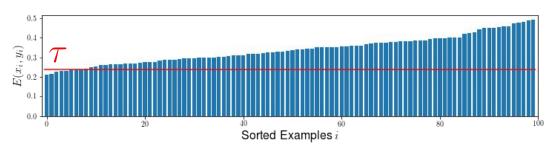
Two steps: prediction (test time) and calibration steps.

1. Prediction: define how confidence sets $C_{\theta}(x)$ are constructed.

$$C_{\theta}(x) := \{k \in [K] : E(x,k) := \pi_{\theta,k}(x) \ge \tau\}$$

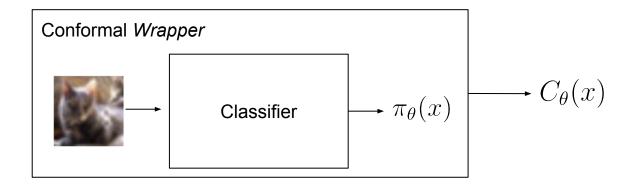
2. Calibration: define threshold au on held-out calibration set $I_{\rm cal}$.

$$au = lpha$$
 -quantile of $\{E(x_i, y_i)\}_{i \in I_{\mathrm{cal}}}$



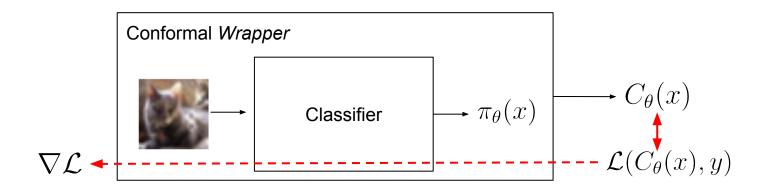
Training of Classifier with Conformal Wrapper

Conformal prediction is typically applied after training:



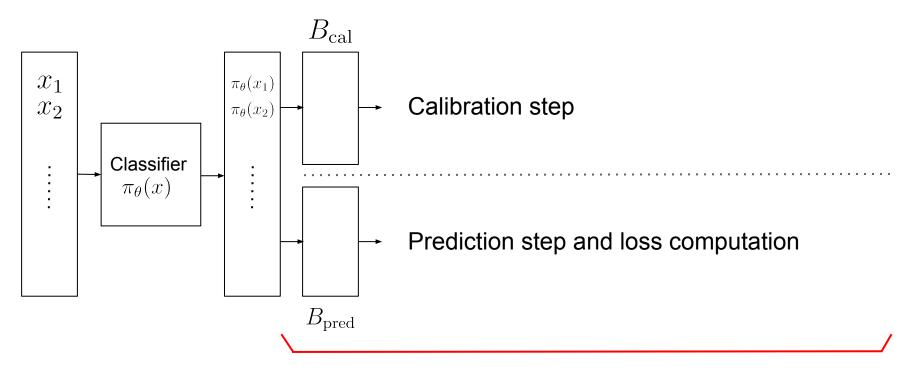
Training of Classifier with Conformal Wrapper

Conformal prediction is typically applied after training:

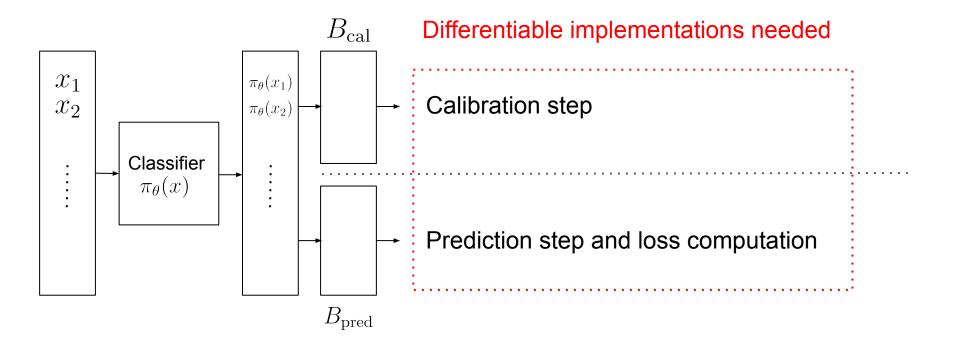


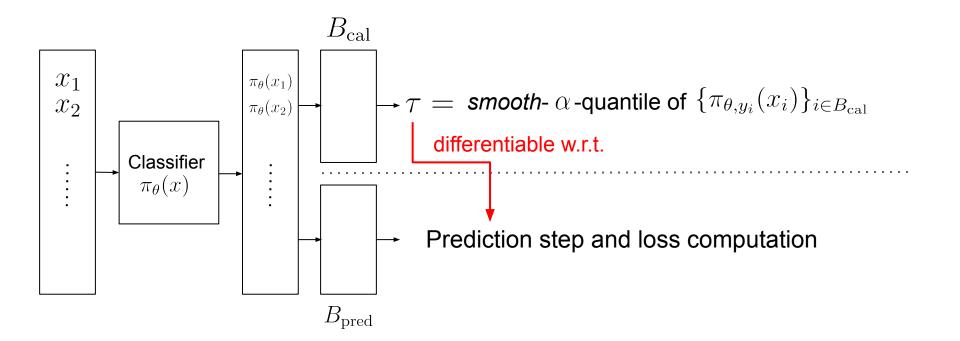
→ Independent of conformal prediction method used at test time.

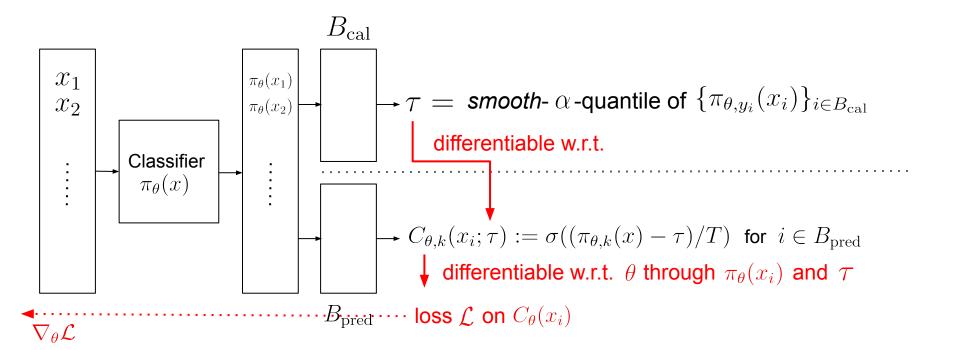
DeepMind

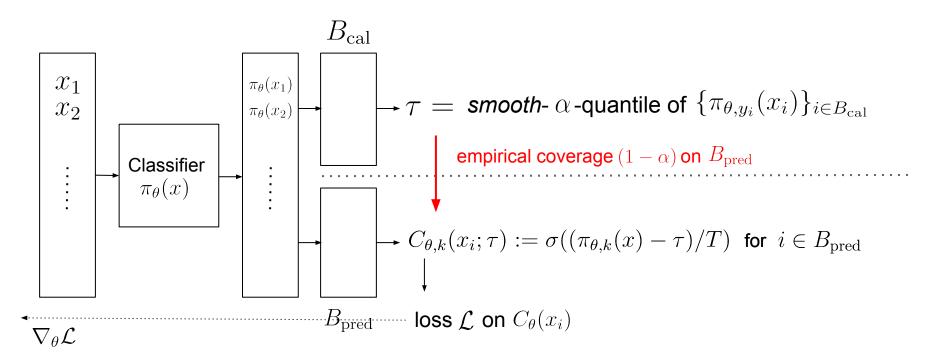


"Simulate" conformal prediction on each mini-batch









Re-calibrate at test time to obtain coverage guarantee!

Objectives

This talk:

- Reduce overall uncertainty
- Reduce class-conditional uncertainty

More applications in medical diagnosis in paper:

 Influence composition of confidence set

Optimizing Inefficiency

Train to directly reduce inefficiency:

$$\Omega(C_{\theta}(x)) = \sum_{k=1}^{K} C_{\theta,k}(x)$$

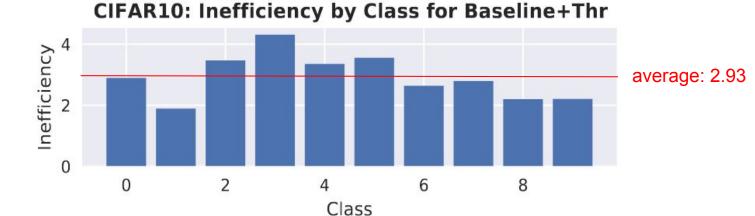
- $C_{\theta,k}(x) \in [0,1]$ interpreted as "soft assignments"
- can be seen as smooth approximation of $\mathbb{E}[|C_{\theta}(x)|]$
- no loss on true label y as empirical coverage close to $(1-\alpha)$

Reducing Inefficiency: Results

Inefficiency \downarrow for α = 0.01:				
CP at test time:	Thr-Probs		APS [2]	
Dataset	Baseline	Ours	Baseline	Ours
MNIST	2.23	2.11 (-5.4%)	2.50	2.14 (-14.14%)
F-MNIST	2.05	1.67 (-18.5%)	2.36	1.72 (-27.1%)
EMNIST (K = 52)	2.66	2.49 (-6.4%)	4.23	2.87 (-32.2%)
CIFAR10	2.93	2.84 (-3.1%)	3.30	2.93 (-11.1%)
CIFAR100	10.63	10.44 (-1.8%)	16.62	12.73 (-23.4%)

Inefficiency Distribution

Inefficiency ↓ distributed very differently across classes:



Results: CIFAR10

- Possible inefficiency improvement per class (in %)
- Cost in terms of average inefficiency increase across classes (in %)

Conclusion: Conformal Training

- = end-to-end training of classifier and conformal wrapper.
- retains coverage guarantee
- reduces inefficiency
- allows arbitrary, application-specific losses

Paper: <u>arxiv.org/abs/2110.09192</u>

