Gradient Importance Learning for Incomplete Observations

Qitong Gao* Dong Wang* Joshua D. Amason* Siyang Yuan* Chenyang Tao*

Ricardo Henao* Majda Hadziahmetovic* Lawrence Carin*,† Miroslav Pajic*

*Duke University

†King Abdullah University of Science and Technology

Contact: qitong.gao@duke.edu, miroslav.pajic@duke.edu

Motivation

- Learning from incomplete datasets is common and inevitable
 - There are three major causes for missing data: Missing completely at random (MCAR), missing at random (MAR) and missing not at random (MNAR)

	MCAR	MAR	MNAR
Observable Variables	Independent	Dependent	Dependent
Unobservable Variables	Independent	Independent	Dependent

- Existing works mostly rely on imputation methods to fill in missing data before inference
 - GAIN (ICML'18) and MIWAE (ICML'19) use generative models (VAEs & GANs) to estimate missing entries
 - BRITS (NeurIPS'18) imposes both imputation and prediction losses to be jointly optimized during learning

Motivation

- However, imputations may not be necessary for downstream analysis;
 Sometimes the missingness speaks for itself!
- Both patients A and B are admitted to ICU for infections. From the records:
 - Doctors issued more PCR tests (specific to viral infections) to A,
 - More blood culture (specific to bacterial infections) to B,
 - By just looking at missingness patterns: A had undergone viral infections while B had bacterial infections.

Patient A	
-----------	--

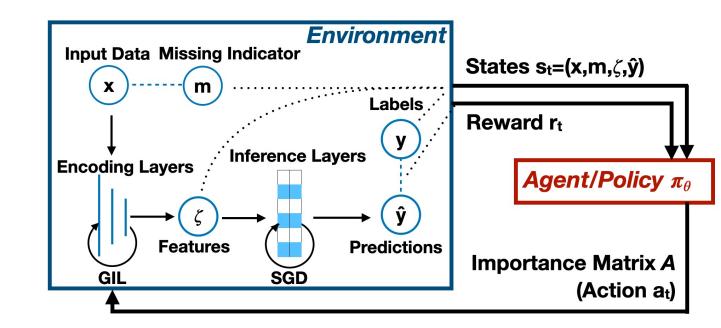
	Blood Culture	PCR Panel			
02/11		\checkmark			
02/12	N/A	$\overline{\checkmark}$			
02/13		\checkmark			
02/14	N/A	$\overline{\mathbf{A}}$			
02/15	N/A	$\overline{\checkmark}$			
02/16	N/A	$\overline{\checkmark}$			
02/17	N/A	V			

Patient B

	Blood Culture	PCR Panel			
02/11					
02/12	abla	N/A			
02/13		N/A			
02/14		N/A			
02/15		N/A			
02/16	\square	N/A			
02/17		N/A			

Gradient Importance Learning (GIL)

- Our method, GIL, trains models to
 - better capture the information underlying missingness, and
 - make accurate predictions over incomplete data,
 - without using any imputation losses/algorithms.
- Main Idea: Reinforcement learning (RL) is used to discover underlying information and infuse them into the gradients for training of downstream prediction models.



Gradient Importance Learning (GIL)

- Consider multi-layered perceptrons (MLPs), or LSTMs followed by dense layers as the prediction model
 - -The 1st hidden layer (or the LSTM layer) <u>encoding layer</u>,
 - The ones that follows *inference layers*.
- The gradients used to train the encoding layer can be formulated as outer products between the layer inputs and gradients propagated from deeper layers,

$$\frac{\partial L}{\partial W_{enc}} = \Delta \cdot \chi^{\mathsf{T}};$$

L is the loss function, W_{enc} the weights of encoding layers, Δ the gradients propagated from inference layers and x is the inputs.

• The i^{th} column in $\frac{\partial L}{\partial W_{enc}}$ is weighted by the i^{th} element of x, which could be missing => directly propagating such gradients may not be meaningful.

Gradient Importance Learning (GIL)

• Hence, the gradients can be re-weighted by an importance matrix **A** elementwise during back-propagation, i.e.,

$$W_{enc} \leftarrow W_{enc} - \alpha \cdot (\Delta \cdot x^{\mathsf{T}}) \odot A.$$

- As *A* is introduced into the back-propagation after the original SGD gradients are calculated, its elements cannot be figured using the same back-propagation solver.
- Idea: Use RL to solve A by
 - First, formulating the back-propagation process for training the prediction model as an MDP,
 - Then, leverage actor-critic methods to generate an RL policy that can adapt elements of A in response to the changes of x, W_{enc} during training.

Experimental Results

GIL (imputation-free) vs existing 2-step (imputation THEN prediction) methods

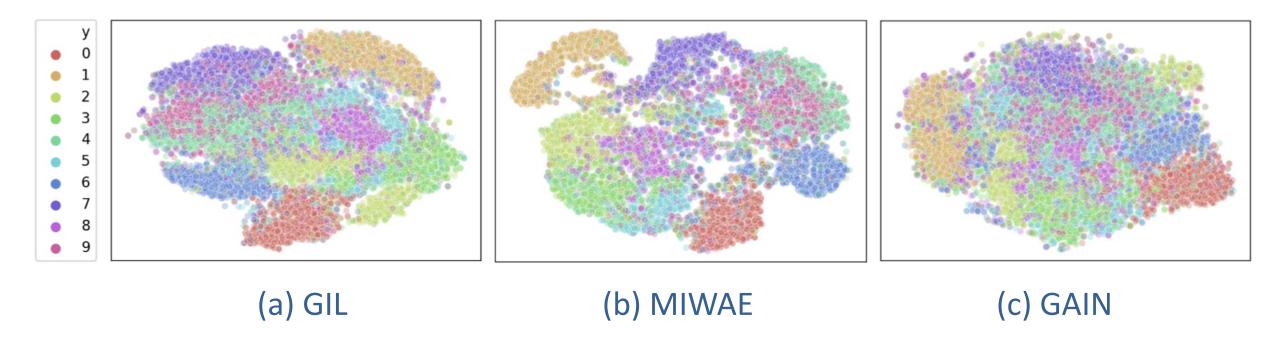
- Comparison two real-world, large-scaled healthcare datasets, and MNIST digits
- GIL achieved the best performance on MIMIC-III dataset for septic shock prediction
 - A survey (Fleuren et al., 2020) over septic shock predictions reported that the highest AUC of existing domain-expert-designed models is around 96%,
 - However, GIL does not require any domain expertise for modeling and learning.

Table 1: Accuracy and AUC obtained from the MIMIC-III dataset.

	GIL	-D	-H	GAIN	MIWAE	GP-VAE	BRITS	MICE	Mean	CF	kNN	MF	EM
Var-l.	Acc. 93.32 AUC 96.10	93.09 96.79	89.17 92.96	90.32 95.57	88.71 94.28	-	-		88.02 92.56				
Fix-l.	Acc. 91.47 AUC 95.29	91.01 95.57	88.25 92.99	88.48 91.94	86.18 93.10	76.50 81.47	80.24 92.13		86.41 91.69				

Experimental Results

GIL learns more expressive feature representations (outputs from the encoding layer)!



t-SNE visualizations of the feature space learned by GIL, MIWAE (ICML'19) and GAIN (ICML'18) on the MNIST dataset with 90% missing rate.

Thank you

