

Learning to Remember Patterns: Pattern Matching Memory Networks for Traffic Forecasting

Hyunwook Lee, Seungmin Jin, Hyeshin Chu, Hongkyu Lim, Sungahn Ko*

Ulsan National Institute of Science and Technology (UNIST)

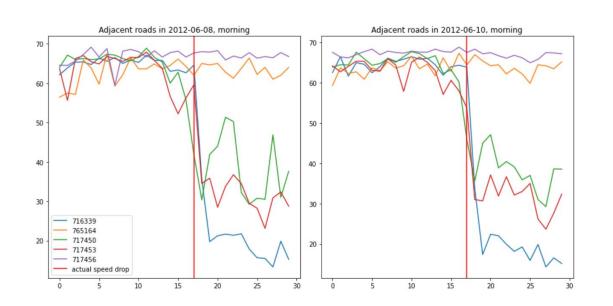
ICLR 2022

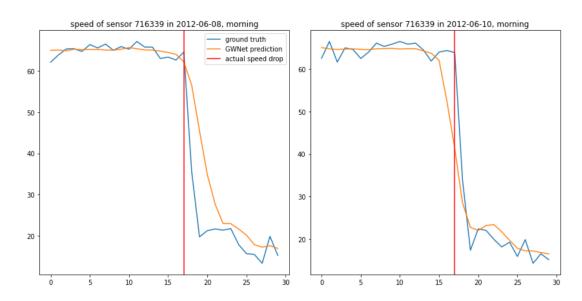
Contact information: gusdnr0916@unist.ac.kr

Traffic Forecasting

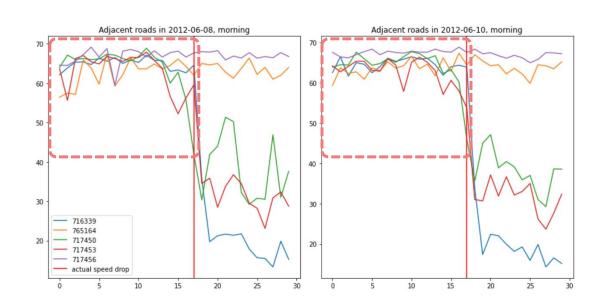
- Traffic forecasting is well-known and well-studied subject in timeseries forecasting
- Traffic forecasting model should deal with both spatial and temporal dependency
- Our main focus is how to model temporal correlation between similar and different circumstances

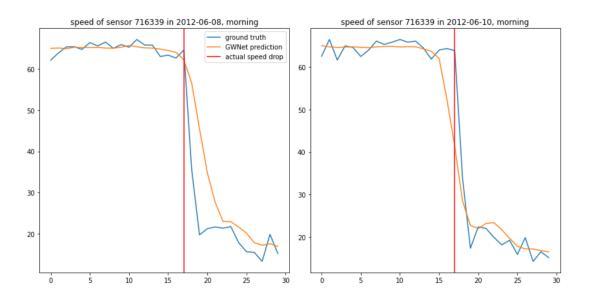
Sensitive to noise / fluctuation



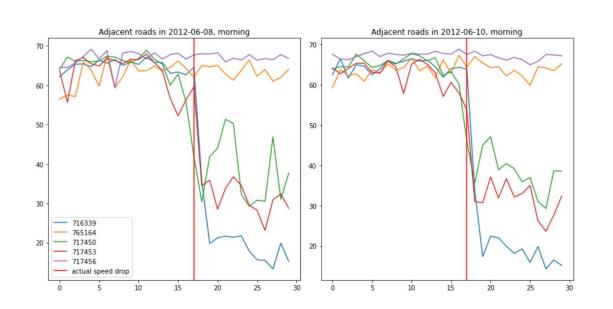


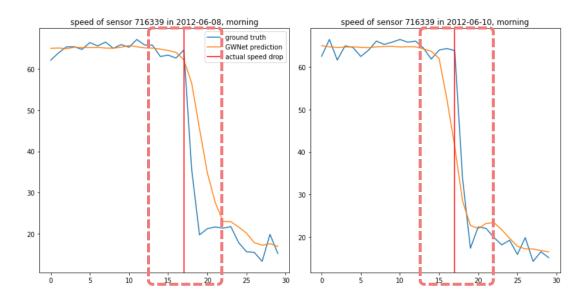
Sensitive to noise / fluctuation



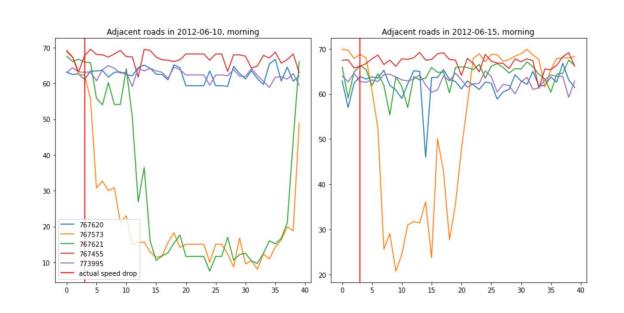


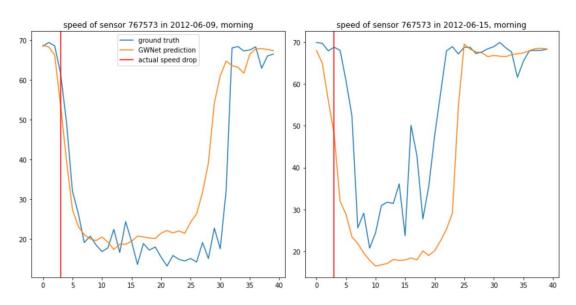
Sensitive to noise / fluctuation



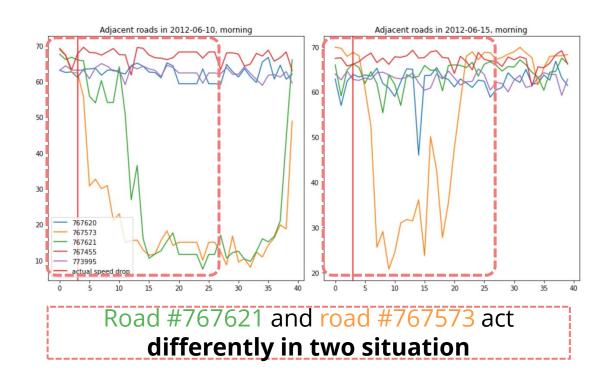


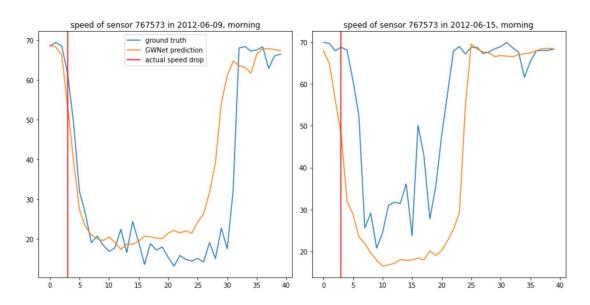
- Sensitive to noise / fluctuation
- Rarely recognize situation (or speed pattern) for the prediction



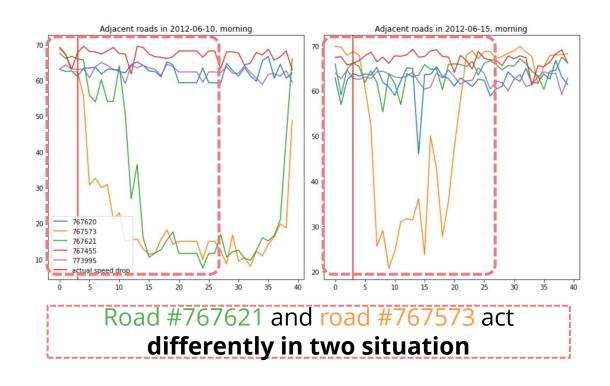


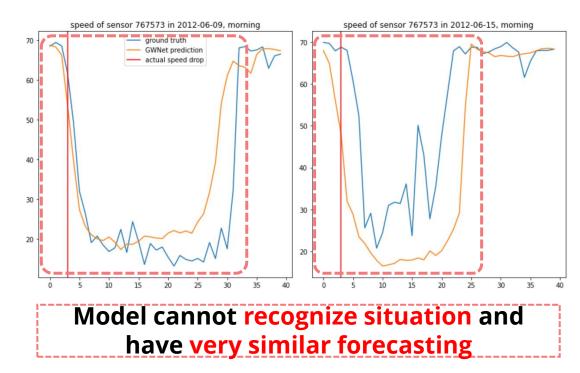
- Sensitive to noise / fluctuation
- Rarely recognize situation (or speed pattern) for the prediction





- Sensitive to noise / fluctuation
- Rarely recognize situation (or speed pattern) for the prediction
- How to acquire robust / situation(pattern)-aware forecasting?





Problem Reformulation

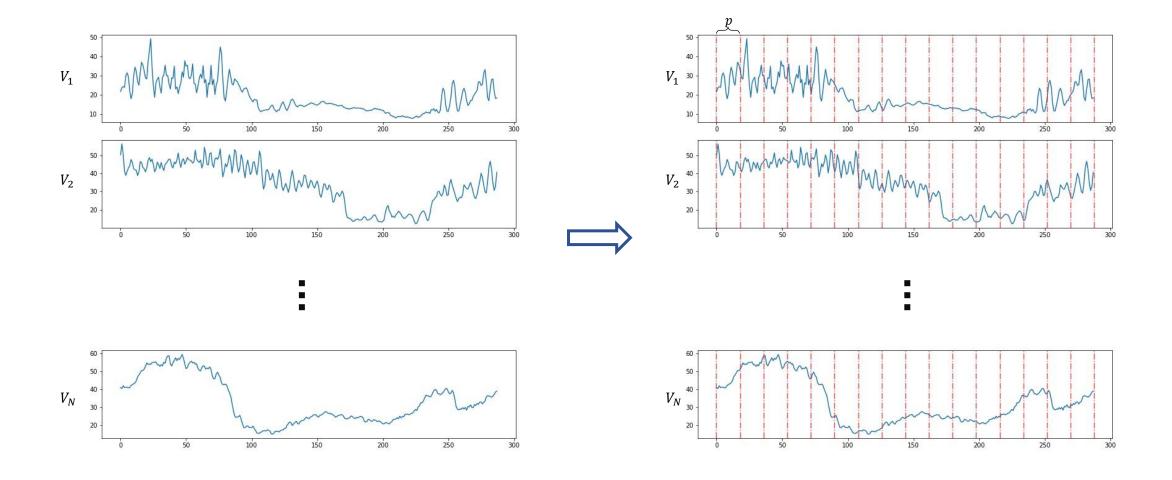
- Traditionally, traffic forecasting problem is formulated:
 - $\left[X_{\mathcal{G}}^{(t-T'+1)}, \dots, X_{\mathcal{G}}^{(t)}\right] \xrightarrow{f(\cdot)} \left[X_{\mathcal{G}}^{(t+1)}, \dots, X_{\mathcal{G}}^{(t+T)}\right]$
 - Not pattern-aware forecasting but momentary, instance-sensitive
- In this work, we reformulate the problem as:

•
$$\left[X_{\mathcal{G}}^{(t-T'+1)}, \dots, X_{\mathcal{G}}^{(t)}\right] \xrightarrow{d(\cdot), k-NN} \left[P_1^t, \dots, P_N^t\right] \xrightarrow{f(\cdot)} \left[X_{\mathcal{G}}^{(t+1)}, \dots, X_{\mathcal{G}}^{(t+T)}\right]$$

- Reformulate point-wise representation learning into pattern-matching, pattern-wise representation learning
- To solve reformulated problem, we have to build pattern set and novel deep learning model for the memorization

Pattern Set Extraction

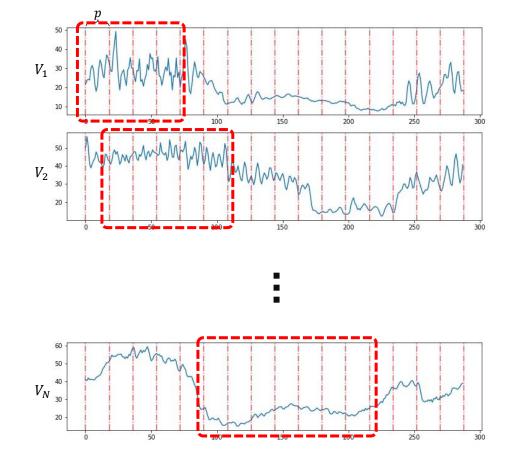
• Split daily trends into T'-length patterns → prototype patterns

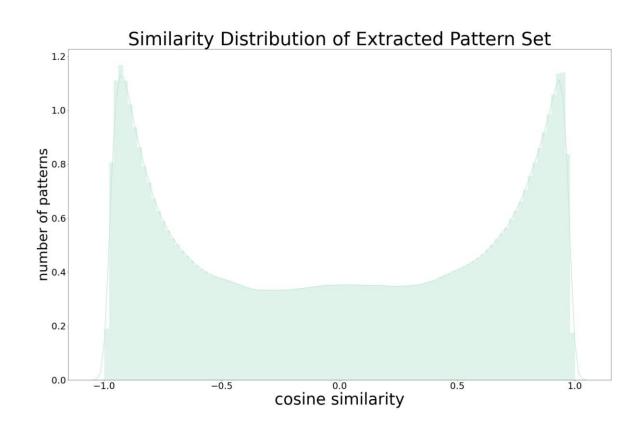


Pattern Set Extraction: Unbiasing

Prototype pattern set have unsolved problems

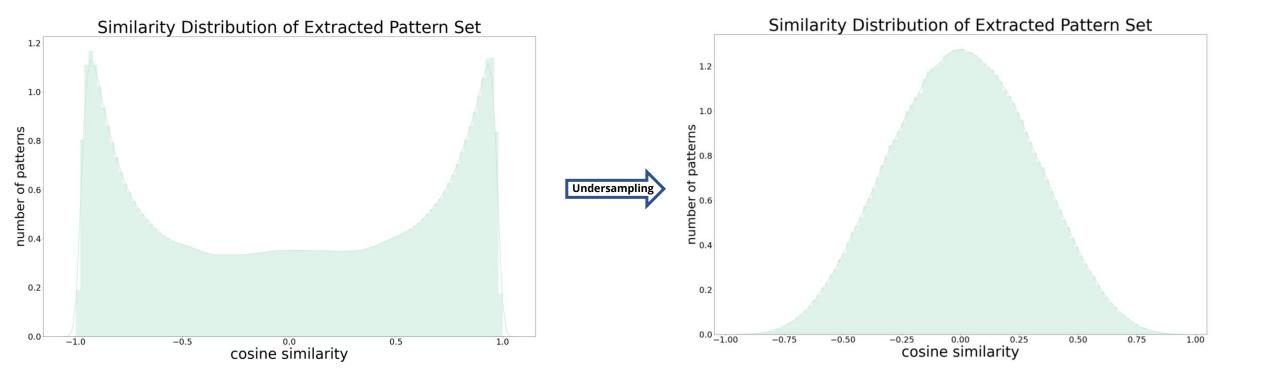
- Too many duplicated patterns w/ biased distribution (i.e., class imbalance)
- Large size ($|P| = N \times \left| \frac{288}{T'} \right| > 1000$)





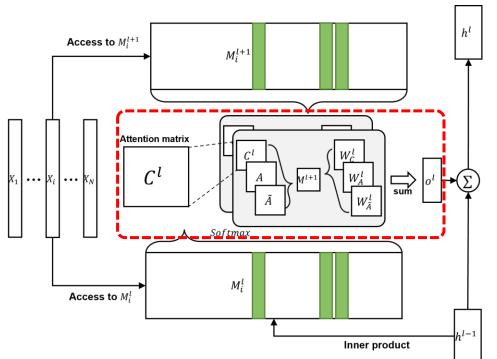
Pattern Set Extraction: Unbiasing

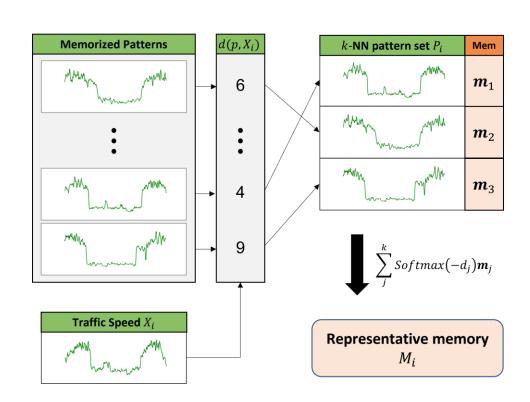
 By utilizing clustering-based undersampling, we have representative pattern set w/ balanced similarity distribution



Pattern Matching Memory Networks

- How to fully utilize representative patterns?
- GCMem: a graph-aware memory cell for the traffic prediction
 - Combine adjacent weight sharing (Sukhbaatar et al., 2015)
 with attention and graph convolution

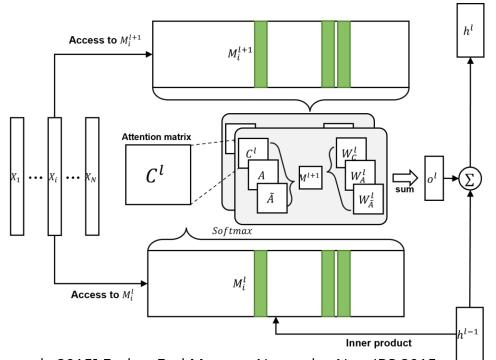


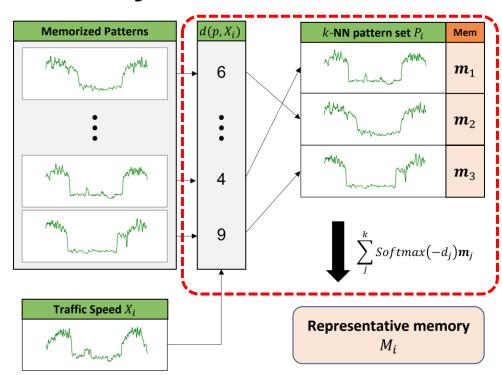


[Sukhbaatar et al., 2015] End-to-End Memory Networks, NeurlPS 2015.

Pattern Matching Memory Networks

- How to fully utilize representative patterns?
- GCMem: a graph-aware memory cell for the traffic prediction
 - Combine adjacent weight sharing (Sukhbaatar et al., 2015)
 with attention and graph convolution
 - Enhance referring diversity with k-NN memory access

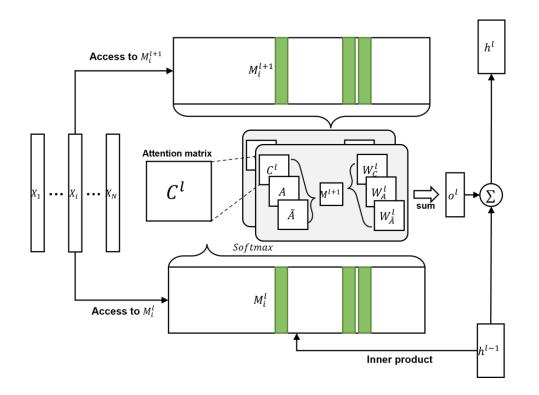


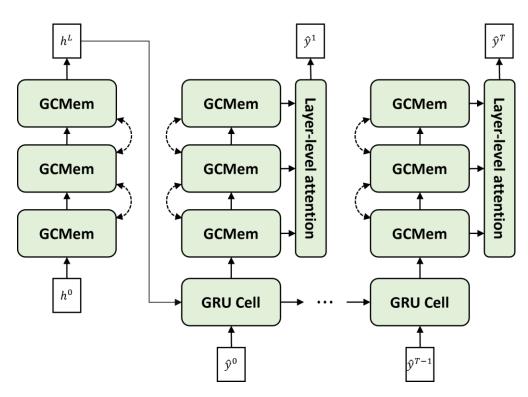


[Sukhbaatar et al., 2015] End-to-End Memory Networks, NeurlPS 2015.

Pattern Matching Memory Networks

- PM-MemNet: simple RNN-based forecasting model w/ GCMem
 - To handle small noise and matching error, ho in encoder is:
 - $h_i^0 = emb(T) + W_n N_i$, where $N_i = X_i p_1$
 - By layer-level attention, model can choose which information will be used for prediction





Experiments: Performance Evaluation

- PM-MemNet shown significant improvement across all tasks
 - Though we utilize RNN-structure, PM-MemNet achieves sota performance on long-term prediction

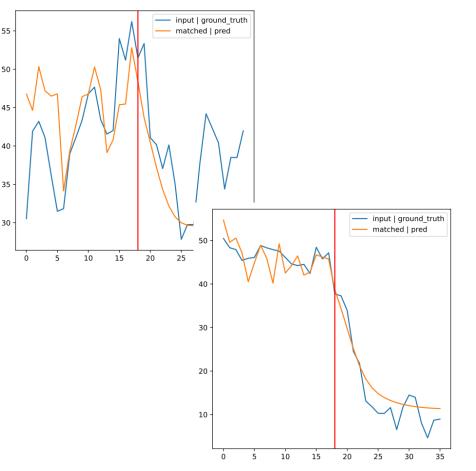


Table 1: Experimental Results for NAVER-Seoul and METR-LA datasets

Dataset	T	Metric	HA	MLP	STGCN	GCRNN	DCRNN	ASTGCN	GWNet	GMAN	PM-MemNet
NAVER-Seoul	15min	MAE	6.54	5.28	4.63	4.87	4.86	5.09	4.91	5.20	4.57
		MAPE	18.24	16.86	14.49	15.23	15.35	16.14	14.86	16.98	14.43
		RMSE	9.32	7.78	6.92	7.18	7.12	7.44	7.24	8.32	6.72
	30min	MAE	7.16	6.13	5.50	5.73	5.67	5.71	5.26	5.35	5.04
		MAPE	20.15	20.05	17.37	18.17	18.38	18.78	16.16	17.47	16.34
		RMSE	10.18	9.51	8.83	9.03	8.80	8.73	8.13	8.67	7.86
	60min	MAE	8.22	7.08	6.77	6.58	6.40	6.22	5.55	5.48	5.24
		MAPE	23.37	23.44	20.42	20.95	21.09	20.37	16.97	17.89	16.94
		RMSE	11.54	11.13	10.89	10.58	10.06	9.58	8.77	8.94	8.39
	90min	MAE	9.24	7.79	8.06	7.14	6.86	6.76	5.87	5.58	5.40
		MAPE	26.40	26.08	22.93	22.86	22.74	21.83	17.89	18.18	17.44
		RMSE	12.77	12.17	12.86	11.43	10.69	10.32	9.33	9.09	8.68
METR-LA	15min	MAE	4.23	2.93	2.61	2.59	2.56	3.25	2.72	2.86	2.66
		MAPE	9.76	7.76	6.59	6.73	6.67	9.27	7.14	7.67	7.06
		RMSE	7.46	5.81	5.19	5.12	5.10	6.28	5.20	5.77	5.28
	30min	MAE	4.80	3.60	3.22	3.08	3.01	3.80	3.12	3.14	3.02
		MAPE	11.30	10.00	8.39	8.72	8.42	11.28	8.66	8.79	8.49
		RMSE	8.34	7.29	6.63	6.32	6.29	7.59	6.34	6.54	6.28
	60min	MAE	5.80	4.69	4.31	3.74	3.60	4.49	3.58	3.48	3.40
		MAPE	14.04	13.68	11.13	11.50	10.73	13.69	10.30	10.10	9.88
		RMSE	9.86	9.24	8.71	7.71	7.65	8.94	7.53	7.30	7.24
	90min	MAE	6.65	5.58	5.41	4.23	4.06	4.97	3.85	3.71	3.64
		MAPE	16.37	17.08	13.76	13.49	12.53	15.53	11.39	11.00	10.74
		RMSE	10.97	10.52	10.47	8.79	8.58	9.71	8.12	7.71	7.74

Experiments: Ablation Study

- SimpleMem shows importance of spatial modeling in traffic domain
- Even with very simple decoder architecture, GCMem outperforms existing works
- From the set of experiments, we have proven traffic data can be generalized with small number of representative patterns

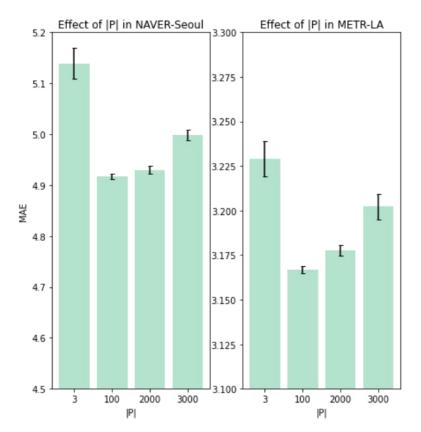
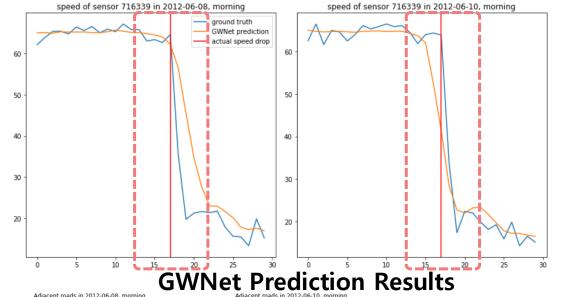


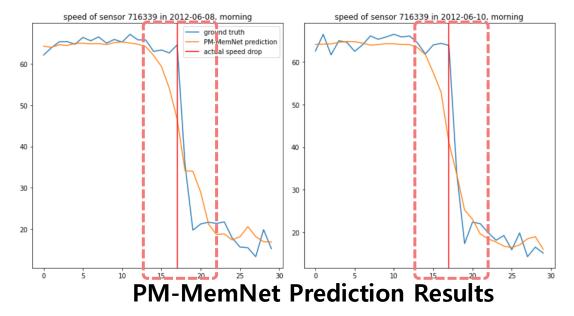
Table 2: Ablation study result. Note that 'Ours' means PM-MemNet.

Dataset	T	Metric	Ours	SimpleMem	CNN Decoder	RNN Decoder	Ours (L=1)	Ours $(\mathbb{P} = k)$	Ours ($ \mathbb{P} >> 1000$)
NAVER-Seoul	15min	MAE	4.57	5.72	4.56	4.67	4.72	4.66	4.59
		MAPE	14.43	18.18	14.40	14.84	14.98	14.77	14.48
		RMSE	6.72	8.79	6.71	6.83	6.87	6.89	6.73
	30min	MAE	5.04	5.84	5.06	5.19	5.22	5.21	5.09
		MAPE	16.34	18.86	16.36	16.87	16.97	16.91	16.41
		RMSE	7.86	9.24	7.90	8.02	8.03	8.18	7.97
	60min	MAE	5.24	6.38	5.32	5.47	5.52	5.53	5.36
		MAPE	16.94	21.42	17.19	17.91	17.97	18.05	17.19
		RMSE	8.39	10.08	8.51	8.69	8.70	8.92	8.67
	90min	MAE	5.40	6.95	5.55	5.70	5.72	5.74	5.52
		MAPE	17.44	23.89	17.99	18.73	18.63	18.73	17.76
		RMSE	8.68	10.88	8.82	9.10	9.05	9.31	8.94
METR-LA	15min	MAE	2.66	3.01	2.63	2.68	2.68	2.67	2.68
		MAPE	7.06	8.03	6.98	7.10	7.11	7.09	7.13
		RMSE	5.28	5.94	5.32	5.31	5.31	5.35	5.31
	30min	MAE	3.02	3.27	3.01	3.06	3.06	3.06	3.04
		MAPE	8.49	9.20	8.46	8.56	8.59	8.67	8.51
		RMSE	6.28	6.68	6.36	6.32	6.27	6.36	6.32
	60min	MAE	3.40	3.72	3.41	3.46	3.47	3.49	3.45
		MAPE	9.88	10.94	9.88	10.02	10.07	10.34	9.87
		RMSE	7.24	7.70	7.28	7.31	7.25	7.39	7.32
	90min	MAE	3.64	4.09	3.65	3.71	3.73	3.75	3.69
		MAPE	10.74	12.25	10.85	10.87	10.98	11.30	10.63
		RMSE	7.74	8.38	7.71	7.81	7.75	7.91	7.81
								•	

Experiments: Qualitative Evaluation HAiV

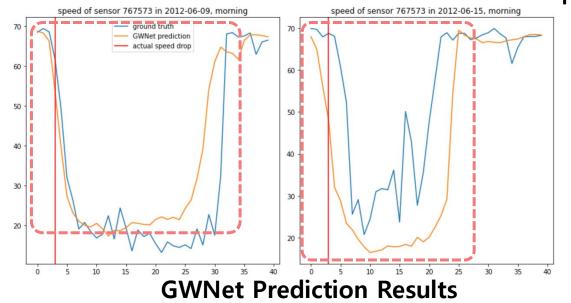
- In contrast to GWNet, PM-MemNet shows much robust prediction
- Because of fluctuation, GWNet forecasts differently even in similar circumstances

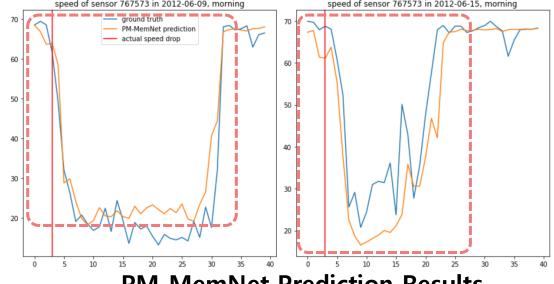




Experiments: Qualitative Evaluation HAiV

- GWNet cannot deal with situation in right graph
- PM-MemNet shows better adaptation in both situations





Speed of adjacent roads

PM-MemNet Prediction Results

Summary

- Traffic forecasting model can achieve benefits in both robustness and situation-aware forecasting with patternmatching
- We suggests new perspective for traffic forecasting
 - Reformulate forecasting problem into pattern matching problem
 - Design a novel traffic forecasting model PM-MemNet
 - Have proven small set of patterns can represents core features
 - Suggest many possible research directions for our problem setting
- More details can be found:
 - Paper: https://arxiv.org/abs/2110.10380
 - Code and NAVER-Seoul dataset: https://github.com/HyunWookL/PM-MemNet