Multimeasurement Generative Models

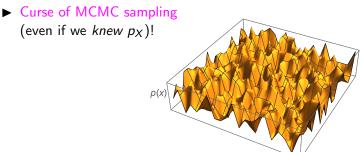
Saeed Saremi^{1,2} Rupesh Kumar Srivastava¹

¹NNAISENSE, Inc. ²UC Berkeley

ICLR, 2022

The Big Picture

- ▶ The setup: $\{x_i\}_{i=1}^n$ drawn from an *unknown* distribution with density p_X in \mathbb{R}^d .
- ▶ Generative modeling is the task of drawing independent samples from p_X .
- ► The distributions of interest are typically very "complex".
- ▶ The ambient dimension d is typically large $d \gg 1$ (≈ 2 × 10⁵ for FFHQ-256).
- ► Curse of dimensionality: kernel density estimation is doomed in high dimensions.



▶ Our solution: bypass learning/sampling p_X ; study a (much) smoother density in \mathbb{R}^{Md} .

M-Density

(b) $\mathbf{y} := (y_1, \dots, y_M)$

▶ We smooth the (unknown) density p_X with a factorial kernel with M channels. The new smoothed density in \mathbb{R}^{Md} is referred to as M-density:

$$p(\mathbf{y}) = \int p(\mathbf{y}|x)p(x)dx, \text{ where } p(\mathbf{y}|x) = \prod_{m=1}^{M} p_m(y_m|x)$$
 (1)

- ▶ Note the convention $p(y) := p_Y(y)$, $p(x) := p_X(x)$, etc.
- ▶ Given $\{x_i\}_{i=1}^n$, how can we learn $p(\mathbf{y})$? Learn how to estimate X given $\mathbf{Y} = \mathbf{y}$. We generalized empirical Bayes and derived analytical expression(s) for $\widehat{\mathbf{x}}(\mathbf{y})$.
- \blacktriangleright How do we sample X? Sample Y with Langevin MCMC and estimate X.

Parametrization Schemes

(a) x

(b) $y = (y_1, ..., y_M)$

(c) $\widehat{x}_{\theta}^{(m)}(\mathbf{y})$

(d) $\overline{\mathbf{y}}$

► MDAE parametrization scheme:

$$\nabla \log p(\mathbf{y}) \approx \frac{\mathbf{\nu}_{\theta}(\mathbf{y}) - \mathbf{y}}{\sigma^2},$$
 (2)

where ν is a neural network and σ is the noise level: $Y_m = X + N(0, \sigma^2 I_d)$

► MDAE learning objective:

$$\mathcal{L}(\theta) = \frac{1}{M} \mathbb{E}_{(x,\mathbf{y}) \sim p(\mathbf{y}|x)p(x)} \| \mathbf{x} \otimes \mathbf{M} - \boldsymbol{\nu}_{\theta}(\mathbf{y}) \|_{2}^{2}, \text{ where } \mathbf{x} \otimes \mathbf{M} := (x,x,\ldots,x)$$
 (3)

- ▶ Note that we do *not* use MCMC during learning.
- ▶ The first theoretical connection between DAEs and empirical Bayes.

Walk-Jump Sampling (Saremi and Hyvärinen, 2019)

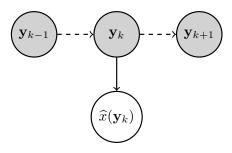


Figure: walk-jump sampling

- ▶ We use underdamped Langevin MCMC to sample the learned M-density $p_{\theta}(\mathbf{y})$.
- ► MCMC walk is based on discretizing the underdamped Langevin diffusion:

$$d\mathbf{v}_t = -\gamma \mathbf{v}_t dt + u \nabla \log p_{\theta}(\mathbf{y}_t) dt + (\sqrt{2\gamma u}) d\mathbf{B}_t,$$

$$d\mathbf{y}_t = \mathbf{v}_t dt.$$

▶ Jumps are decoupled from the MCMC chain:

$$\widehat{\mathsf{x}}_{\theta}(\mathsf{y}) = \nu_{\theta}(\mathsf{y}) \tag{4}$$

 \blacktriangleright This sampling scheme is exact for large M.

Permutation-Invariant Gaussian M-Densities

- ► Stable chains with 1 million steps on MNIST and CIFAR-10.
- ➤ The first unconditional MCMC-based generative model on FFHQ-256.
- Note that sampling in diffusion models is based on a sequence of conditional distributions.
- ▶ Figure on the left: M = 8 and $\sigma = 4$.
- ► M-density is permutation invariant.
- ► $Md \approx 1.5 \times 10^6$
- ► Only 10 steps per image in the chain visualized here (starting from noise).
- ► Smoothing is key for good mixing.

FFHQ-256

Figure: Three MCMC chains for FFHQ-256 MDAE ($\sigma=4$, M=8)

CIFAR-10

- ► FID score of 43.95 obtained from a *single* MCMC chain (50,000 samples selected from a single chain with 1 million steps).
- ▶ State of the art in terms of the FID score obtained for long chains.
- ▶ By far the longest chain (1 million+ steps) in the literature.
- \blacktriangleright FID score 21.74 by increasing M and improved training (work in progress):

