Non-linear Operator Approximations for Initial Value Problems

Gaurav Gupta, Xiongye Xiao, Radu Balan, Paul Bogdan

Initial Value Problems

$$u_t = \mathcal{F}(t, u), \quad x \in \Omega$$
$$u(x, 0) = u_0(x), \quad x \in \Omega$$

Kermack-McKendrik- epidemic

Hodgkin-Huxley - neuron

$$\frac{\partial u}{\partial t} = -0.5u\frac{\partial u}{\partial x} - \frac{\partial^3 u}{\partial x^3}, x \in (0,1), t \in (0,1]$$

$$\frac{\partial u}{\partial t} = -u\frac{\partial u}{\partial x} + v\frac{\partial^2 u}{\partial x^2}, x \in (0,2\pi), t \in (0,1]$$

$$u_0(x) = u(x,t=0)$$
Korteweg-de Vries $u_0(x) = u(x,t=0)$.
Burgers'

$$u_t = -u\frac{\partial u}{\partial x} - \frac{\partial^2 u}{\partial x^2} - \frac{\partial^4 u}{\partial x^4}, x \in (0,1), t \in (0,1]$$
 Kuramoto-Sivashinsky $u_0(x) = u(x,t=0)$.

$$\frac{\partial w(x,t)}{\partial t} + u(x,t) \cdot \nabla w(x,t) - \nu \Delta w(x,t) = f(x), \quad x \in (0,1)^2, t \in (0,T] \\ \nabla \cdot u(x,t) = 0, \qquad x \in (0,1)^2, t \in [0,T] \\ w_0(x) = w(x,t=0), \qquad x \in (0,1)^2$$
 Navier-Stokes

Exponential Operators

Solution /
$\mathbf{u}(t=\tau) = e^{t\mathbf{A}}\mathbf{u}_0$
$u(x,\tau) = e^{\tau \frac{\partial^2}{\partial x^2}} u_0(x)$
$u(x,\tau) = e^{\tau \mathcal{L}} u_0(x) + \int_0^\tau e^{(\tau-t)\mathcal{L}} \mathcal{N} f(u(x,t)) dt$

Exponential operators
Non-linear

Data Efficiency

Neural Operator

$$T = T_1 \circ \sigma \circ T_2 \dots \sigma \circ T_N$$

Non-linearity e.g. ReLU

Canonical linear operator

Can we do better for getting compact models?

Explicitly embed exponential operators

Padé Approximation

Exponential attains Taylor series but truncation not efficient

Less error by Padé approximation

Used by Matlab, Scipy for Matrix exponentials expm

$$e^{\mathcal{L}} \approx r_{pq}(\mathcal{L}) = \left(\sum_{j=0}^{q} b_{j} \underbrace{\mathcal{L} \circ \mathcal{L} \circ \ldots \circ \mathcal{L}}_{j-\text{times}}\right)^{-1} \left(\sum_{j=0}^{p} a_{j} \underbrace{\mathcal{L} \circ \mathcal{L} \circ \ldots \circ \mathcal{L}}_{j-\text{times}}\right)$$

$$pre-determined$$

Padé Neural Operator

$$e^{\mathcal{L}} \approx r_{pq}(\mathcal{L}) = \left(\sum_{j=0}^{q} b_{j} \underbrace{\mathcal{L} \circ \mathcal{L} \circ \ldots \circ \mathcal{L}}_{j-\text{times}}\right)^{-1} \left(\sum_{j=0}^{p} a_{j} \underbrace{\mathcal{L} \circ \mathcal{L} \circ \ldots \circ \mathcal{L}}_{j-\text{times}}\right)$$

$$\downarrow b_{1} \qquad b_{2} \qquad b_{q} \qquad \qquad \downarrow b_{q} \qquad \qquad \downarrow$$

Gradient bounds

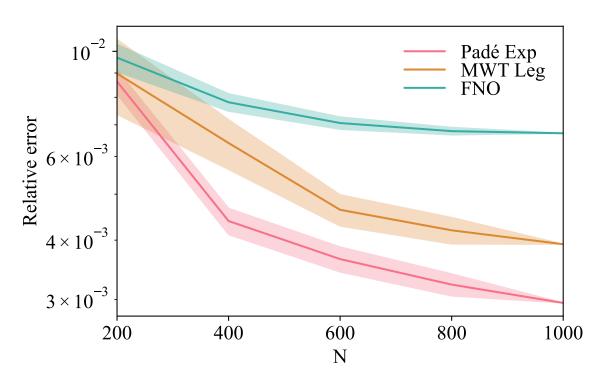
Theorem: Given a linear operator \mathcal{L} and non-linear layer $\sigma(Wx+b)$, the gradients of the operation $y := F(x, \theta_{\mathcal{L}}, W, b) = [p/q]e^{\mathcal{L}}(x)$ are bounded as

$$\left\| \frac{\partial y}{\partial \theta_{\mathcal{L}}} \right\| \leq \exp(\|\mathcal{L}\|) (\|b\|_{2} + \|W\| \|x\|_{2}) \left(\sum_{j=1}^{n_{\theta}} \left\| \frac{\partial \mathcal{L}}{\partial \theta_{j}} \right\|^{2} \right)^{1/2},$$

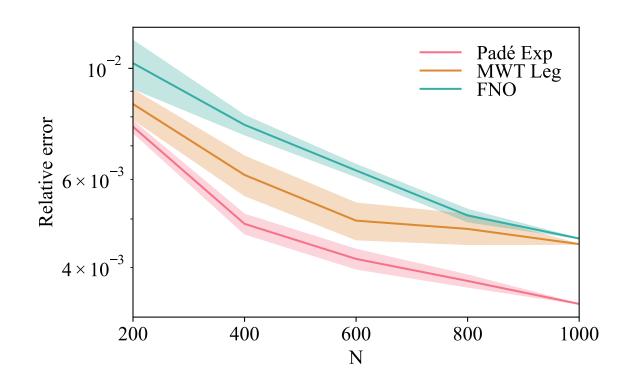
$$\left\| \frac{\partial y}{\partial W} \right\| \leq \exp(\|\mathcal{L}\|) \|x\|_{2},$$

$$\left\| \frac{\partial y}{\partial b} \right\| \leq \exp\left(\frac{p}{p+q} \|\mathcal{L}\| \right).$$

Data efficiency on 1D datasets



KdV equation

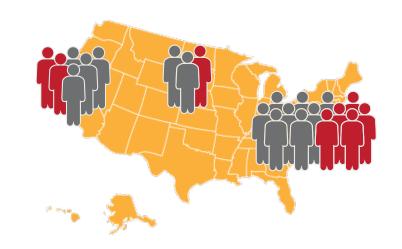


KS equation

Epidemic Forecasting (COVID19)

Predict Confirmed (C) Recovered (R) Deaths (D)

Less data: only ~450 samples in total



Concatenate 50 US states x 3 compartments ———— 2D array

$$T(\underbrace{d_{-14}, d_{-13}, \dots, d_{-1}}) = (\underbrace{d_0, d_1, \dots, d_6})$$

$$u_0(x) \qquad \qquad u(\tau, x)$$

$$\uparrow \qquad \qquad \uparrow$$

COVID19 forecasting benchmarks

Networks		MAE		Relative L2 error	Net. vs FC
	C	R	D		L — — — — —
Padé Exp	1219 ± 130	1752 ± 666	211 ± 31	0.0155 ± 0.0034	82.14% (+652K)
MWT Leg	3554 ± 1157	2928 ± 1338	284 ± 209	0.0245 ± 0.0043	62.0% (+18M)
FNO 3D	4213 ± 391	3391 ± 1233	592 ± 157	0.0301 ± 0.0045	54.0% (+1.02M)
LNO 3D	28502 ± 12698	6586 ± 3442	1465 ± 965	0.1056 ± 0.0394	-105.0% (+238K)
Neural ODE	4339 ± 1174	3443 ± 1408	443 ± 192	0.0310 ± 0.0069	53.8% (+172K)
Seq2Seq	2798 ± 456	3317 ± 1690	346 ± 83	0.0273 ± 0.0058	63.7%(+1.8M)
Transformer	7087 ± 972	6613 ± 2853	1722 ± 320	0.0501 ± 0.0094	13.4% (+15.2K)
FC	10305 ± 2818	5885 ± 1609	1634 ± 686	0.0609 ± 0.0111	(37.2K)

Compact neural operator with best performance

COVID19 forecasting sample

