Path Integral Sampler: A Stochastic Control Approach for Sampling

Qinsheng Zhang Yongxin Chen

International Conference on Learning Representations

Sampling

Problem Statement

Draw samples from a given target density $\hat{\mu} = Z\mu$

 \blacktriangleright $\hat{\mu}$ known up to a normalizing constant Z

Stochastic control

Stochastic system

$$d\mathbf{x}_t = \mathbf{u}_t dt + d\mathbf{w}_t, \ \mathbf{x}_0 \sim \mathbf{v},$$

Notations:

 $Q^{\mathbf{u}}$: path measure associated with control policy \mathbf{u}

 $\mu^{\mathbf{u}}$: terminal distribution of \mathbf{x}_T driven by \mathbf{u}

 Q^0 : path measure associated with $\mathbf{u} = 0$

 μ^0 : terminal distribution of \mathbf{x}_T driven by $\mathbf{u} = 0$

Stochastic control

Stochastic system

$$d\mathbf{x}_t = \mathbf{u}_t dt + d\mathbf{w}_t, \ \mathbf{x}_0 \sim \mathbf{v},$$

Notations:

 $Q^{\mathbf{u}}$: path measure associated with control policy \mathbf{u}

 $\mu^{\mathbf{u}}$: terminal distribution of \mathbf{x}_T driven by \mathbf{u}

 \mathcal{Q}^0 : path measure associated with $\boldsymbol{u}=0$

 μ^0 : terminal distribution of \mathbf{x}_T driven by $\mathbf{u} = 0$

Control cost

$$\mathbb{E}\left[\int_0^T \frac{1}{2} \|\mathbf{u}_t\|^2 dt + \Psi(\mathbf{x}_T) | \mathbf{x}_0 \sim \nu\right]$$

Sampling as a stochastic control problem

Goal

Find a control policy to drive particles from ν to μ

$$d\mathbf{x}_t = \mathbf{u}_t dt + d\mathbf{w}_t, \ \mathbf{x}_0 \sim \mathbf{v}$$

Warning

► $\{\mathbf{u}: \mu^{\mathbf{u}} = \mu\}$ can be infinite

Sampling as a stochastic control problem

Theorem 1

When ν is a Dirac distribution and terminal loss is chosen as $\Psi(\mathbf{x}_T) = \log \frac{\mu^0(\mathbf{x}_T)}{\mu(\mathbf{x}_T)}$, the distribution \mathcal{Q}^* induced by the optimal control policy is

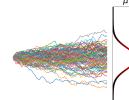
$$Q^*(\tau) = Q^0(\tau|\mathbf{x}_T)\mu(\mathbf{x}_T).$$

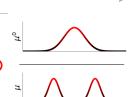
Moreover, $Q^*(\mathbf{x}_T) = \mu(\mathbf{x}_T)$.

Uncontrolled Q^0

Terminal Cost $\Psi = \log \frac{\mu^0}{\mu}$

Optimal control $Q^* = \frac{\mu}{\mu^0}Q^0$







Optimal control via Path Integral

$$\mathbf{u}_t^*(\mathbf{x}) = \nabla \log \phi_t(\mathbf{x}) \quad \phi_t(\mathbf{x}) = \mathbb{E}_{\mathcal{Q}^0}[\exp(-\Psi(\mathbf{x}_T))|\mathbf{x}_t = \mathbf{x}]$$

Optimal control via Path Integral

$$\mathbf{u}_t^*(\mathbf{x}) = \nabla \log \phi_t(\mathbf{x}) \quad \phi_t(\mathbf{x}) = \mathbb{E}_{\mathcal{Q}^0}[\exp(-\Psi(\mathbf{x}_T))|\mathbf{x}_t = \mathbf{x}]$$

Wasserstein-2 distance

Under mild condition, with sampling step size Δt , if $\left\|\mathbf{u}_t^* - \mathbf{u}_t\right\|^2 \leq d\epsilon$ for any t, then

$$W_2(Q^u(\mathbf{x}_T), \mu(\mathbf{x}_T)) = \mathcal{O}(\sqrt{Td(\Delta t + \epsilon)}).$$

Optimal control via Path Integral

$$\mathbf{u}_t^*(\mathbf{x}) = \nabla \log \phi_t(\mathbf{x}) \quad \phi_t(\mathbf{x}) = \mathbb{E}_{\mathcal{Q}^0}[\exp(-\Psi(\mathbf{x}_T))|\mathbf{x}_t = \mathbf{x}]$$

Wasserstein-2 distance

Under mild condition, with sampling step size Δt , if $\left\|\mathbf{u}_t^* - \mathbf{u}_t\right\|^2 \leq d\epsilon$ for any t, then

$$W_2(Q^u(\mathbf{x}_T), \mu(\mathbf{x}_T)) = \mathcal{O}(\sqrt{Td(\Delta t + \epsilon)}).$$

 \blacktriangleright Accessing ϕ_t can be expensive unless Ψ is simple

Neural control policy \mathbf{u}_{θ} :

$$\mathbf{u}^* = \operatorname*{arg\,min}_{\mathbf{u}} \mathbb{E}_{\mathcal{Q}^u} \Bigg[\int_0^T \frac{1}{2} \left\| \mathbf{u}_t
ight\|^2 \mathrm{d}t + \log \frac{\mu^0(\mathbf{x}_T)}{\mu(\mathbf{x}_T)} \Bigg].$$

Algorithm 1 Training

```
Input: Vector: \mathbf{x}_0 = 0, Scalar: y_0 = 0
```

Output: $\mathbf{u}_t(\mathbf{x})$ parameterized by θ **Define:** SDE drift $\mathbf{f}(t, [\mathbf{x}_t, y_t]) = [\mathbf{u}_{\theta_t}(\mathbf{x}_t), \frac{1}{2} || \mathbf{u}_{\theta_t}(\mathbf{x}_t)]$

Define: SDE drift $\mathbf{f}(t, [\mathbf{x}_t, y_t]) = [\mathbf{u}_{\theta t}(\mathbf{x}_t), \frac{1}{2} \|\mathbf{u}_{\theta t}(\mathbf{x}_t)\|^2]$, diffusion $\mathbf{g}(t, [\mathbf{x}_t, y_t]) = [1, 0]$

loop epoches

 $\mathbf{x}_T, y_T = \operatorname{sdeint}(\mathbf{f}, \mathbf{g}, [\mathbf{x}_0, y_0], [0, T])$ # Integrate SDE from 0 to T with Neural SDE Gradient descent step $\nabla_{\theta}[y_T + \log \frac{\mu^0(\mathbf{x}_T)}{\nu(\mathbf{x}_T)}]$ # Optimize control policy

done

Neural control policy \mathbf{u}_{θ} :

$$\mathbf{u}^* = \operatorname*{arg\,min}_{\mathbf{u}} \mathbb{E}_{\mathcal{Q}^u} \Bigg[\int_0^T \frac{1}{2} \left\| \mathbf{u}_t
ight\|^2 \mathrm{d}t + \log \frac{\mu^0(\mathbf{x}_T)}{\mu(\mathbf{x}_T)} \Bigg].$$

```
Algorithm 1 Training
```

```
Input: Vector: \mathbf{x}_0 = 0, Scalar: y_0 = 0
Output: \mathbf{u}_t(\mathbf{x}) parameterized by \theta
Define: SDE drift f(t, [\mathbf{x}_t, y_t]) = [\mathbf{u}_{\theta t}(\mathbf{x}_t), \frac{1}{2} \|\mathbf{u}_{\theta t}(\mathbf{x}_t)\|^2], diffusion \mathbf{g}(t, [\mathbf{x}_t, y_t]) = [1, 0]
loop epoches
       \mathbf{x}_T, y_T = \text{sdeint}(\mathbf{f}, \mathbf{g}, [\mathbf{x}_0, y_0], [0, T]) # Integrate SDE from 0 to T with Neural SDE
        Gradient descent step \nabla_{\theta}[y_T + \log \frac{\mu^0(\mathbf{x}_T)}{\mu(\mathbf{x}_T)}]
                                                                                     # Optimize control policy
done
```

Warning:

Global optimal policy is impossible to train

How to get unbiased samples?

Importance sampling for suboptimal policy

$$w^{u}(\tau) = \frac{dQ^{*}(\tau)}{dQ^{u}(\tau)} = \exp\left(\int_{0}^{T} -\frac{1}{2} \|\mathbf{u}_{t}\|^{2} dt - \mathbf{u}_{t}' d\mathbf{w}_{t} - \Psi(\mathbf{x}_{T})\right)$$

Benchmark

Normalization constant estimation

	MG(d=2)			Funnel $(d = 10)$			LGCP ($d = 1600$)		
	В	S	A	В	S	A	В	S	A
PIS_{RW} -GT	-0.012	0.013	0.018	-	-	-	-	-	-
PIS-NN	-1.691	0.370	1.731	-0.098	5e-3	0.098	-92.4	6.4	92.62
PIS-Grad	-0.440	0.024	0.441	-0.103	9e-3	0.104	-13.2	3.21	13.58
PIS_{RW} -NN	-1.192	0.482	1.285	-0.018	7e-3	0.02	-60.8	4.81	60.99
PIS_{RW} -Grad	-0.021	0.030	0.037	-0.008	9e-3	0.012	-1.94	0.91	2.14
AFT	-0.509	0.24	0.562	-0.208	0.193	0.284	-3.08	1.59	3.46
SMC	-0.362	0.293	0.466	-0.216	0.157	0.267	-435	14.7	436
NUTS	-1.871	0.527	1.943	-0.835	0.257	0.874	-1.3e3	8.01	1.3e3
HMC	-1.876	0.527	1.948	-0.835	0.257	0.874	-1.3e3	8.01	1.3e3
VI-NF	-1.632	0.965	1.896	-0.236	0.0591	0.243	-77.9	5.6	78.2

Table 1: Benchmarking on mode separated mixture of Gaussian (MG), Funnel distribution and Log Gaussian Cox Process (LGCP) for estimation log normalization constants. B and S stand for estimation bias and standard deviation among 100 runs and $A^2 = B^2 + S^2$.

More experiments

Background

PIS-Grad

rad AFT

 $_{\rm SMC}$

NUTS

HMC

VI-NF

PIS-NN

	В	S	$\sqrt{B^2 + S^2}$
VI-NF	-2.3	0.76	2.42
AFT	-1.7	0.95	1.96
SMC	-10.6	2.01	10.79
PIS_{RW} -NN	-1.9	0.81	2.06
PIS _{RW} -Grad	-0.87	0.31	0.92

Alanine dipeptide molecules

Estimation of $\log p_{\theta}(x)$ of a trained VAE.

- ► Paper: https://arxiv.org/abs/2111.15141
- ► Code: https://github.com/qsh-zh/pis