

Few-Shot Domain Adaptation for End-to-End Communication

Jayaram Raghuram¹, Yijing Zeng¹, Dolores García², Rafael Ruiz², Somesh Jha^{1,3}, Joerg Widmer², Suman Banerjee¹

¹UW-Madison, ²IMDEA Networks, ³XaiPient

End-to-End Learning for Communication

- We want to transmit one of *m* messages and decode it accurately at the receiver
- Encoder/Transmitter NN: learns a custom encoding (modulation) most suitable for the channel conditions
- Decoder/Receiver NN: learns to predict the transmitted message from the channel output
- Channel model: a generative model of the channel condition density

- Message y is equivalent to a class label
- Decoder is a classifier
- Channel output \boldsymbol{x} is the feature vector

Encoder/Transmitter NN

- Input is a one-hot coded message: all zeros except 1 at the message index
- Example: For m = 4 messages, the message 2 is encoded as [0, 1, 0, 0]
- Output **z** is a custom encoding or modulation, a vector of dimension d
- Usually, d = 2. Corresponds to the In-phase and Quadrature-phase (IQ) components of a transmitted RF signal

Red circles: standard 16-QAM Black triangles: autoencoder learned

Generative Channel Model

- Learns the conditional probability density $P(x \mid z)$ of channel output given channel input
- We model the channel using a Gaussian Mixture density network (MDN)
- $P(x \mid z)$ is a Gaussian mixture for each unique z
- There are *m* Gaussian mixtures, one per message or corresponding symbol **z**
- MDN is a neural network that predicts the parameters of the *m* Gaussian mixtures

Decoder/Receiver NN

- Classifier network that takes x as input and predicts the probability of the m messages
- Decoder output: predicted probability of each message class $P_{\theta_d}(y \mid x)$
- Message with the highest probability is the decoded message

$$\widehat{y}(\mathbf{x}) = \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}} P_{\boldsymbol{\theta}_d}(y \mid \mathbf{x})$$

• Symbol error rate (SER) is the expected error in the decoder's prediction

$$\mathbb{E}_{(\mathbf{x},y)}[\mathbb{1}(\widehat{y}(\mathbf{x}) \neq y)]$$

Need for Few-Shot Domain Adaptation

- Channel is dynamic: distribution can change frequently (e.g. a wireless link)
- Autoencoder performance can degrade under a changing channel distribution
- Retraining the channel model and autoencoder frequently is not practical:
 - ☐ Frequent training data collection lowers the throughput
 - ☐ Time consuming and often hard to update the transmitter/encoder side frequently

Can we adapt the channel model and decoder using only a small set of samples from the target channel distribution?

Proposed Method

MDN (channel) Adaptation

- An adaptation layer with much smaller number of parameters compared to the MDN is used
- A closed-form Kullback-Leibler divergence is used as regularization in the small-sample setting

Decoder Adaptation

- A feature transformation that approximately maps decoder inputs from target distribution back to the source distribution
- Decoder and encoder networks remain unchanged

Experiments

- We evaluate on several simulated but realistic distribution changes
 - ☐ AWGN → Ricean fading (different signal-to-noise ratios)
 - ☐ AWGN → Uniform fading
 - ☐ Ricean fading → Uniform fading
 - ☐ Uniform fading → Ricean fading
 - ☐ Random Gaussian mixture → Random Gaussian mixtures (50 datasets)
- Real experiments on a mmWave FPGA platform
 - ☐ Ultra-wide-band mm-wave transceiver, 60 GHz RF front-end antennas
 - ☐ Distribution changes: IQ (in-phase, quadrature-phase) imbalance-based distortion to the symbol constellation

Results - FPGA experiments

- Distribution changes introduced by IQ imbalance-based symbol distortion
- We varied the level of IQ imbalance. Results below for 25% and 30% distortion

Summary

We proposed a few-shot domain adaptation method for autoencoder-based e2e communication:

- 1) A sample- and parameter-efficient adaptation of the Gaussian MDN channel
- 2) An optimal feature transformation at the decoder that approximately maps the target-domain inputs to the source domain
- Paper: https://openreview.net/forum?id=4F1gvduDeL
- Code repo: https://github.com/jayaram-r/domain-adaptation-autoencoder

Thank you!