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End-to-End Learning for Communication
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* Decoder/Receiver NN: learns to predict the
transmitted message from the channel output

* Message Y is equivalent to a class label
e Decoder is a classifier
* Channel output X 1s the feature vector

* Channel model: a generative model of the channel
condition density



Encoder/Transmitter NN
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Generative Channel Model

* Learns the conditional probability density
P(x | z) of channel output given channel input

*  \We model the channel using a Gaussian Mixture

density network (MDN)
* P(x| 2) is a Gaussian mixture for each unique Z

* There are m Gaussian mixtures, one per message
ot corresponding symbol Z

* MDN is a neural network that predicts the
parameters of the m Gaussian mixtures
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Decoder/Receiver NN
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Need for Few-Shot Domain Adaptation

* Channel 1s dynamic: distribution can change frequently (e.g. a wireless link)

* Autoencoder performance can degrade under a changing channel distribution

* Retraining the channel model and autoencoder frequently is not practical:
 Frequent training data collection lowers the throughput

d Time consuming and often hard to update the transmitter/encoder side frequently

Can we adapt the channel model and decoder using only a small set of samples
from the target channel distribution?




Proposed Method

MDN (channel) Adaptation
* An adaptation layer with much smaller number of
parameters compared to the MDN is used

* A closed-form Kullback-Leibler divergence 1s used
as regularization in the small-sample setting

Decoder Adaptation

* A feature transformation that approximately maps
decoder inputs from target distribution back to the
source distribution

* Decoder and encoder networks remain unchanged
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Experiments

* We evaluate on several simulated but realistic distribution changes
d AWGN - Ricean fading (different signal-to-noise ratios)
d AWGN - Uniform fading
d Ricean fading = Uniform fading
d Uniform fading = Ricean fading

1 Random Gaussian mixture = Random Gaussian mixtures (50 datasets)

* Real experiments on a mmWave FPGA platform
[ Ultra-wide-band mm-wave transceiver, 60 GHz RF front-end antennas

d Distribution changes: 1Q (in-phase, quadrature-phase) imbalance-based distortion to the symbol
constellation



Results - FPGA experiments

* Distribution changes introduced by IQ imbalance-based symbol distortion

* We varied the level of IQQ imbalance. Results below for 25% and 30% distortion
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Summary

We proposed a few-shot domain adaptation method for autoencoder-based e2e communication:

1) A sample- and parameter-efficient adaptation of the Gaussian MDN channel

2) An optimal feature transformation at the decoder that approximately maps the target-domain inputs
to the source domain

* Paper: https://opentreview.net/forumrid=4F1gvduDel.

* Code repo: https://github.com/jayaram-r/domain-adaptation-autoencoder
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