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• We are interested in learning from pairs of

frames X = [x1,x2]
• Weak-supervision: a subset of all

generative factors is shared between the
frames

• Neither true number of generative nor
independent/shared factors is known in
general

Robot arm images taken from Locatello et al. [2020]
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Multivariate Hypergeometric Distribution
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Multivariate Hypergeometric Distribution
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Hypergeometric Distribution
Noncentral [Fisher, 1935]
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c∏

i=1

(
mi

xi

)
ωxi

i (2)

ωi: group importance parameter of group i
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Method

1. Reformulate the multivariate distribution as a sequence of interdependent and conditional
univariate hypergeometric distributions.

2. Calculate the probability mass function of the respective univariate distributions.
3. Sample from the conditional distributions utilizing the Gumbel-Softmax trick.
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Method

1. Reformulate the multivariate distribution as a sequence of interdependent and conditional
univariate hypergeometric distributions.

2. Calculate the probability mass function of the respective univariate distributions.
3. Sample from the conditional distributions utilizing the Gumbel-Softmax trick.

pX(x;ω) = pX(x1, x2, x3;ω)
= pX1 (x1;ω)pX2 (x2 | x1;ω)pX3 (x3 | x1, x2;ω)
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Method

1. Reformulate the multivariate distribution as a sequence of interdependent and conditional
univariate hypergeometric distributions.

2. Calculate the probability mass function of the respective univariate distributions.
3. Sample from the conditional distributions utilizing the Gumbel-Softmax trick.

N = 12
n = 5

mL = m1 and mR = m2 + m3

ωL = ω1 and ωR = ω2m2 + ω3m3

mR

X1 ∼ pXL (n, mL, mR, ωL, ωR)
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Method

1. Reformulate the multivariate distribution as a sequence of interdependent and conditional
univariate hypergeometric distributions.

2. Calculate the probability mass function of the respective univariate distributions.
3. Sample from the conditional distributions utilizing the Gumbel-Softmax trick.

N = 9
n = 4

mL = m2 and mR = m3

ωL = ω2 and ωR = ω3

X2 ∼ pXL (n, mL, mR, ωL, ωR)
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Method

1. Reformulate the multivariate distribution as a sequence of interdependent and conditional
univariate hypergeometric distributions.

2. Calculate the probability mass function of the respective univariate distributions.
3. Sample from the conditional distributions utilizing the Gumbel-Softmax trick.

N = 4
n = 1

mL = m3 and mR = 0
ωL = ω3 and ωR = 0
X3 ∼ pXL (n, mL, 0, ωL, 0)
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WSL: Dataset
mpi3 toy

• synthetic dataset with 7 generative factors
– color
– shape
– size
– camera height
– background color
– horizontal axis
– vertical axis

• Dataset originally introduced as part of the
Disentanglement challenge at Neurips 2019 [Gondal
et al., 2019]

• We use disentanglement_lib for the experiments
[Locatello et al., 2020]
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WSL: Experiments & Results
Estimation of Number of Shared Factors

LabelVAE: [Bouchacourt et al., 2018, Hosoya, 2018]
AdaVAE: [Locatello et al., 2020]

Medical Data Science ICLR 2023 6



WSL: Experiments & Results
Downstream Tasks

s = 0 s = 1 s = 3 s = 5

I S I S I S I
Label 0.14±0.01 0.19±0.03 0.16±0.01 0.10±0.00 0.23±0.01 0.34±0.00 0.00±0.00
Ada 0.12±0.01 0.19±0.01 0.15±0.01 0.10±0.03 0.22±0.02 0.33±0.03 0.00±0.00
HG 0.18±0.01 0.22±0.05 0.19±0.01 0.08±0.02 0.28±0.01 0.28±0.01 0.01±0.00

LabelVAE: [Bouchacourt et al., 2018, Hosoya, 2018]
AdaVAE: [Locatello et al., 2020]
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In the paper, we have

• Detailed derivation of method
• Additional experiments, incl.

– Kolmogorov-Smirnov test to compare proposed
differentiable sampling to reference
implementation [Kolmogorov, 1933, Smirnov,
1939]

– MVHG as prior distribution in a clustering
experiment

Histograms over Random Samples
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