

STUNT: Few-shot Tabular Learning with Self-generated Tasks from Unlabeled Tables

Jaehyun Nam¹, Jihoon Tack¹, Kyungmin Lee¹, Hankook Lee², Jinwoo Shin¹

¹Korea Advanced Institute of Science and Technology (KAIST) ²LG AI Research

Importance of Few-shot Tabular Learning in Practical Deployment

Few-shot semi-supervised tabular learning is a crucial application:

- Credit risk in financial datasets: High labeling costs
- Early infected patiend of COVID-19: Difficulties in collecting new samples for novel tasks
- **STUNT**: We propose a novel framework for few-shot semi-supervised tabular learning.

Significant performance gain, compared to prior semi- and self-supervised baselines with a simple framework.

Fever (°C)	Cough	Fatigue	Shortness of breath (breath/min)	Loss of smell
39	Frequent	Tired	25	Yes
38.5	38.5 Occasional Tired		22	No
•••				
•••		•••		
37.8	Occasional	Fine	28	Yes

Tackling Limited Label Issues: Utilize Unlabeled Datasets

Approaches for few-shot semi-supervised learning across various domains: Utilize unlabeled datasets

- Learning a generalizable and transferable representation (e.g., images and languages) with self-supervised learning
- Self-supervised learning (e.g., SubTab [Ucar et al., 2021], VIME [Yoon et al., 2020]) are not effective for tabular domains
- Heterogeneous characteristic of tabular data
- Do not bring meaningful performance gain over even a simple kNN on few-shot classification accuracy (%)

Туре	Method	income	cmc	karhunen	optdigit	diabetes	semeion	pixel	dna	Avg.
	# shot $= 1$									
Supervised	kNN	61.22	34.99	54.42	65.58	58.56	44.35	61.48	42.67	52.82
Self-supervised	SubTab VIME	$61.88 \\ 61.99$	$\begin{array}{c} 35.68\\ 35.30\end{array}$	$50.32 \\ 59.62$	$67.05 \\ 70.52$	$58.06 \\ 56.95$	40.27 47.20	$60.40 \\ 64.17$	$\begin{array}{c} 45.68\\51.36\end{array}$	$52.42 \\ 55.89$
				# shot	t = 5					
Supervised	kNN	70.49	38.56	79.98	84.89	67.32	68.33	84.02	61.45	69.38
Self-supervised	SubTab VIME	$71.91 \\ 67.80$	$39.51 \\ 37.51$	$69.56 \\ 82.87$	$83.60 \\ 87.42$	$68.79 \\ 64.29$	59.87 71.53	80.13 86.79	$\begin{array}{c} 61.57\\ 69.62 \end{array}$	66.87 70.98

[Ucar et al., 2021] SubTab: Subsetting Features of Tabular Data for Self-Supervised Representation Learning, NeurIPS 2021

[Yoon et al., 2020] VIME: Extending the Success of Self- and Semi-supervised Learning to Tabular Domain, NeurIPS 2020

Utilizing Unsupervised Meta-learning?

Instead, one can utilize the power of unsupervised meta-learning

- Meta-learning is one of the most effective few-shot learning strategies
- Unsupervised meta-learning (CACTUs [Hsu et al., 2019]) reduces the gap via fast adaptation to unseen few-shot tasks
- Promising direction for few-shot tabular learning
- CACTUs outperforms the self-supervised tabular learning methods on few-shot classification accuracy(%)

Туре	Method	income	cmc	karhunen	optdigit	diabetes	semeion	pixel	dna	Avg.
				# shot =	= 1					
Supervised	kNN	61.22	34.99	54.42	65.58	58.56	44.35	61.48	42.67	52.82
Self-supervised	SubTab VIME	$\begin{array}{c} 61.88\\ 61.99\end{array}$	$35.68 \\ 35.30$	$50.32 \\ 59.62$	67.05 70.52	$58.06 \\ 56.95$	40.27 47.20	$60.40 \\ 64.17$	$45.68 \\ 51.36$	$\begin{vmatrix} 52.42 \\ 55.89 \end{vmatrix}$
Unsupervised Meta.	CACTUs	64.02	36.10	65.59	71.98	58.92	48.96	67.61	65.93	59.89
				# shot =	= 5					
Supervised	kNN	70.49	38.56	79.98	84.89	67.32	68.33	84.02	61.45	69.38
Self-supervised	SubTab VIME	$\begin{array}{c} 71.91 \\ 67.80 \end{array}$	$39.51 \\ 37.51$	69.56 82.87	83.60 87.42	68.79 64.29	59.87 71.53	80.13 86.79	$61.57 \\ 69.62$	66.87 70.98
Unsupervised Meta.	CACTUs	72.03	38.81	82.20	85.92	66.79	65.00	85.25	81.52	72.19

[Hsu et al., 2019] Unsupervised Learning via Meta-Learning, ICLR 2019

Unsupervised Meta-Learning for Few-shot Tabular Learning

Unsupervised meta-learning: Meta-learn over the self-generated tasks from unlabeled data

• Generating tasks for unsupervised meta-learning is key to training an effective few-shot learner.

How should we generate more diverse and effective tasks for tabular unsupervised meta-learning?

Idea: We generate a tasks from the unlabeled data by treating the table's column feature as a target.

• The **blood sugar** value can be used as a substituted label for **diabetes**.

Blood pressure (mmHg)	BMI (kg/m²)	Blood sugar (mg/dL)	Age	Insulin (mmU/ml)	Diabe
74	26.0	137	51	135	Positi
68	33.6	197	49	168	Positi
78	35.2	89	54	126	Negat

Jabetes	
Positive	
Positive	
Negative	

Proposed Framework: STUNT

Unsupervised meta-learning with Self-generated Tasks from Unlabeled Tables (STUNT)

- Generate pseudo-labels of the given unlabeled input by k-means clustering on randomly chosen subsets of columns.
- Apply a meta-learning scheme [Snell et al., 2017] to learn generalizable knowledge with the self-generated tasks.

In the few-shot learning setup, there is no labeled validation set. How can we validate our model?
Utilize STUNT to the unlabeled set for an unsupervised validation!

• Highly effective for hyperparameter searching and early stopping

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

 x
 x
 x

- 1. We self-generate diverse tasks from the unlabeled dataset.
- Select random columns.

Why?

• Improve the diversity and the possibility of sampling highly correlated columns with the original label.

Blood pressure (mmHg)	BMI (kg/m²)	VII (kg/m ²) Blood sugar (mg/dL)		Insulin (mmU/ml)
74	26.0	137	51	135
68 33.6		197	49	168
78	35.2	89	54	126

BMI (kg/m²)	Blood sugar (mg/dL)
26.0	137
33.6	197
35.2	89

1. We self-generate diverse tasks from the unlabeled dataset.

- Select random columns.
- Randomly replace the chosen column features with a random value sampled from the same column.

Why?

• Prevent generating a trivial task as the task label can be directly inferred by the input columns.

Blood pressure (mmHg)	BMI (kg/m²)	Blood sugar (mg/dL)	Age	Insulin (mmU/ml)
74	33.6	197	51	135
68	35.2	89	49	168
	•••	•••		
	•••	•••		
78	26.0	137	54	126

BMI (kg/m²)	Blood sugar (mg/dL)			
26.0	137			
33.6	197			
35.2	89			

1. We self-generate diverse tasks from the unlabeled dataset.

- Select random columns.
- Randomly replace the chosen column features with a random value sampled from the same column.
- Generate pseudo-labels by running a k-means clustering over the randomly selected columns.

1. We self-generate diverse tasks from the unlabeled dataset.

- Select random columns.
- Randomly replace the chosen column features with a random value sampled from the same column.
- Generate pseudo-labels by running a k-means clustering over the randomly selected columns.
- The final self-generated task is as below.

Blood pressure (mmHg) BMI (kg/m ²)		Blood sugar (mg/dL)	Age	Insulin (mmU/ml)
74	33.6	197	51	135
68	35.2	89	49	168
•••	•••	•••		
•••	•••	•••		
78	26.0	137	54	126

2. Based on the generated task, we meta-learn the network by utilizing Prototypical Network.

• Learn the embedding space in which classification is performed by computing distances to prototypes of each class.

Why Prototypical Network?

- Allows us to search the effective centroid number rather than fixing it to the class size.
- Model- and data-agnostic.
- Known to outperform advanced meta-learning schemes under various datasets.

- 2. Based on the generated task, we meta-learn the network by utilizing Prototypical Network.
- Learn the embedding space in which classification is performed by computing distances to prototypes of each class.
- For a given task generated with STUNT, sample two disjoint sets S and Q.

	Blood pressure (mmHg)	BMI (kg/m ²) Blood sugar (mg/dL)		Age	Insulin (mmU/ml)
I	74	33.6	197	51	135
	68	35.2	89	49	168
		•••			
	78	26.0	137	54	126

$\tilde{\mathbf{x}}_{u}$

2. Based on the generated task, we meta-learn the network by utilizing Prototypical Network.

- Learn the embedding space in which classification is performed by computing distances to prototypes of each class.
- For a given task generated with STUNT, sample two disjoint sets S and Q.

 $\tilde{\mathbf{x}}_u$

• Construct the classifier over the parametrized embedding by using prototypes of each pseudo-class.

$$f_{\theta}(y = \tilde{c} | \mathbf{x}; \mathcal{S}) = \frac{\exp(-\|z_{\theta}(\mathbf{x}) - \mathbf{p}_{\tilde{c}}\|_{2})}{\sum_{\tilde{c}'} \exp(-\|z_{\theta}(\mathbf{x}) - \mathbf{p}_{\tilde{c}'}\|_{2})} \quad \mathbf{p}_{\tilde{c}} := \frac{1}{|\mathcal{S}_{\tilde{c}}|} \sum_{(\tilde{\mathbf{x}}_{u}, \tilde{\mathbf{y}}_{u}) \in \mathcal{S}_{\tilde{c}}} z_{\theta}(\tilde{\mathbf{x}}_{u})$$

 $S_{\tilde{c}}$: Contains samples with pseudo-class \tilde{c}

Blood pressure (mmHg)	BMI (kg/m²)	Blood sugar (mg/dL)	Age	Insulin (mmU/ml)	
74	33.6	197	51	135	
68	35.2	89	49	168	
					$ \qquad \qquad$
78	26.0	137	54	126	Parameterized Embedding

2. Based on the generated task, we meta-learn the network by utilizing Prototypical Network.

- Learn the embedding space in which classification is performed by computing distances to prototypes of each class.
- For a given task generated with STUNT, sample two disjoint sets S and Q.
- Construct the classifier over the parametrized embedding by using prototypes of each pseudo-class.
- Train the constructed classifier by computing the cross-entropy loss: $\mathcal{L}_{\mathtt{meta}}(\theta, \mathcal{Q}) := \sum_{(\tilde{\mathbf{x}}_u, \tilde{\mathbf{y}}_u) \in \mathcal{Q}} \mathcal{L}_{\mathtt{CE}}(f_{\theta}(\tilde{\mathbf{x}}_u; \mathcal{S}), \tilde{\mathbf{y}}_u)$

$\tilde{\mathbf{x}}_u$									
Blood pressure (mmHg)	BMI (kg/m²)	Blood sugar (mg/dL)	Age	Insulin (mmU/ml)					
74	33.6	197	51	135					
68	35.2	89	49	168					
78	26.0	137	54	126					

Unsupervised Meta-Learning with STUNT: Adaptation

3. Use labeled set to construct the classifier for the few-shot classification.

• For example, prototypes of a real labels in a 1-shot setup are as below.

Experiments: STUNT is effective for 1-shot classification

We report 1-shot test accuracy (%) across various datasets

- We compare to supervised, self-/semi-supervised and unsupervised meta-learning methods.
- Checkmark indicates the use of additional labeled samples for validation.

Туре	Method	Val.	income	cmc	karhunen	optdigit	diabetes	semeion	pixel	dna	Avg.
# shot $= 1$											
	CatBoost	 ✓ 	57.00	34.60	55.67	61.32	60.02	43.21	59.16	41.35	52.06
Sun	MLP	\checkmark	60.52	35.06	48.67	61.02	57.25	40.88	55.62	44.39	50.43
Sup.	LR	\checkmark	59.64	35.08	55.05	65.19	57.61	42.90	59.71	44.28	52.43
	kNN	-	61.22	34.99	54.42	65.58	58.56	44.35	61.48	42.67	52.82
	Mean Teacher	✓	60.63	35.58	54.57	66.10	58.05	43.56	61.02	46.58	53.26
	ICT	\checkmark	61.83	36.53	58.37	69.12	58.08	43.48	60.88	46.55	54.36
Semi-sup.	Pseudo-Label	\checkmark	60.52	34.97	49.44	61.50	57.03	41.42	56.12	44.26	50.66
	MPL	\checkmark	60.85	35.13	47.66	61.52	57.39	41.82	56.01	44.22	50.58
	VIME-Semi	\checkmark	56.40	32.97	57.40	66.85	58.16	40.43	52.86	39.18	50.53
	SubTab + Fine-tune	 ✓ 	59.74	35.65	41.11	49.88	59.35	30.49	42.23	40.86	44.91
	SubTab + LR	\checkmark	61.88	35.68	50.32	67.05	58.06	40.27	60.40	45.68	52.42
Salf sup	SubTab + kNN	-	61.58	35.87	48.74	66.05	59.22	39.99	61.30	44.16	52.36
Sen-sup.	VIME + Fine-tune	\checkmark	60.50	34.98	47.50	61.31	57.23	41.09	53.79	44.30	50.09
	VIME + LR	\checkmark	61.99	35.30	59.62	70.52	56.95	47.20	64.17	51.36	55.89
	VIME + kNN	-	62.16	35.55	58.56	69.31	58.35	46.99	64.62	50.29	55.78
	UMTRA	-	57.23	35.46	49.05	49.87	57.64	26.33	34.26	25.13	41.87
Unsun Meta	SES	-	56.39	34.59	49.19	56.30	59.97	33.73	49.19	39.56	47.37
OlisupMeta.	CACTUs	-	64.02	36.10	65.59	71.98	58.92	48.96	67.61	65.93	59.89
	STUNT (Ours)	-	63.52	37.10	71.20	76.94	61.08	55.91	79.05	66.20	63.88

Experiments: STUNT is effective for 5-shot classification

We report 5-shot test accuracy (%) across various datasets

- We compare to supervised, self-/semi-supervised and unsupervised meta-learning methods.
- Checkmark indicates the use of additional labeled samples for validation.

Туре	Method	Val.	income	cmc	karhunen	optdigit	diabetes	semeion	pixel	dna	Avg.
# shot $= 5$											
	CatBoost	✓	64.51	39.75	82.38	84.05	65.75	68.69	84.49	63.46	69.14
Sun	MLP	\checkmark	66.25	37.40	77.56	83.30	64.32	66.25	81.97	59.73	67.10
Sup.	LR	\checkmark	66.53	37.15	81.02	86.22	64.19	67.87	85.02	58.88	68.36
	kNN	-	70.49	38.56	79.98	84.89	67.32	68.33	84.02	61.45	69.38
	Mean Teacher	✓	67.05	37.73	81.08	86.66	65.45	69.67	85.24	61.47	69.29
	ICT	\checkmark	70.13	38.09	84.58	87.01	65.47	70.26	86.12	63.37	70.63
Semi-sup.	Pseudo-Label	\checkmark	66.26	37.49	78.60	83.71	64.46	67.49	82.94	60.06	67.63
	MPL	✓	67.61	37.47	77.85	83.70	64.51	67.08	82.39	59.65	67.53
	VIME-Semi	✓	65.13	37.32	80.53	87.13	65.39	64.80	82.83	52.08	66.90
	SubTab + Fine-tune	✓	66.01	37.60	67.80	75.40	66.69	56.46	75.34	55.62	62.62
	SubTab + LR	\checkmark	70.12	37.67	73.25	86.07	64.92	61.34	82.14	58.90	66.80
Salf sup	SubTab + kNN	-	71.91	39.51	69.56	83.60	68.79	59.87	80.13	61.57	66.87
Sen-sup.	VIME + Fine-tune	✓	65.97	37.25	77.82	83.13	64.40	63.63	81.01	59.58	66.60
	VIME + LR	✓	67.80	37.51	82.87	87.42	64.29	71.53	86.79	69.62	70.98
	VIME + kNN	-	72.16	39.28	79.15	83.86	66.94	68.45	84.07	71.09	70.63
	UMTRA	-	65.78	38.05	67.28	73.29	64.41	35.90	51.32	25.08	52.64
UnsupMeta.	SES	-	68.27	39.04	74.80	78.46	66.61	52.74	74.80	52.25	63.37
	CACTUs	-	72.03	38.81	82.20	85.92	66.79	65.00	85.25	81.52	72.19
	STUNT (Ours)	-	72.69	40.40	85.45	88.42	69.88	73.02	89.08	79.18	74.77

Experiments: STUNT is effective for multi-task learning

STUNT can **instantly be adapted to multiple tasks** at test-time without further training the network.

• We report few-shot test accuracy (%) on the emotions dataset consists of 6 binary classification tasks.

$\textbf{Method} \setminus \textbf{Task}$	amazed-surprised	happy-please	relaxing-calm	quiet-still	sad-lonely	angry-aggressive	Avg.
			# shot $= 1$				
kNN	59.04	47.14	55.77	66.86	55.96	59.47	57.37
SubTab + kNN	63.32	48.88	56.46	62.56	54.34	57.99	57.26
VIME + kNN	60.07	49.51	55.62	64.74	53.95	60.29	57.36
CACTUs	61.58	50.67	55.63	63.18	55.10	59.39	57.59
STUNT (Ours)	62.71	51.63	59.28	69.34	56.38	63.43	60.46
			# shot = 5				
kNN	70.71	53.48	66.34	81.03	68.51	68.07	68.02
SubTab + kNN	74.41	52.23	64.90	72.70	62.32	63.30	64.98
VIME + kNN	70.71	53.10	66.24	79.54	66.34	67.76	67.28
CACTUs	71.41	53.64	65.18	77.57	64.15	66.57	66.42
STUNT (Ours)	72.38	55.09	67.39	83.10	68.61	70.10	69.45

Experiments: Effectiveness of Pseudo-Validation with STUNT

Pseudo-validation with STUNT is effective for hyperparameter searching & early stopping.

• Pseudo-validation accuracy (%) and test accuracy (%) have a positive correlation.

• Evaluating the early stop model achieves better accuracy (%) than evaluating the model after final train step.

	inco	ome	cr	nc	semeion		pixel	
Problem	Last	Early	Last	Early	Last	Early	Last	Early
1-shot 5-shot	61.58 70.84	63.52 72.69	36.94 40.43	37.10 40.40	51.94 71.55	55.91 73.02	74.92 87.60	79.05 89.08

Further application: Few-shot Tabular Regression with STUNT

- Can STUNT be extended to solve few-shot tabular regression tasks?
 - Idea: Replace the ProtoNet classifier with a kNN regressor at the adaptation stage.
- STUNT is a competitive approach in few-shot tabular regression task.
- Performance gap is often vacuous because STUNT meta-train networks with classification tasks.
- We report the mean squared error on 5 datasets.

Input	news	abalone	cholesterol	sarcos	boston					
# shot $= 5$										
Raw	2.74E-04	1.75E-02	1.37E-02	1.05E-02	3.65E-02					
VIME	2.69E-04	1.70E-02	1.37E-02	1.06E-02	3.53E-02					
CACTUs	2.75E-04	1.72E-02	1.46E-02	1.06E-02	3.76E-02					
STUNT (Ours)	2.68E-04	1.66E-02	1.35E-02	1.06E-02	3.70E-02					
# shot = 10										
Raw	2.53E-04	1.49E-02	1.13E-02	9.21E-03	2.88E-02					
VIME	2.53E-04	1.49E-02	1.13E-02	9.24E-03	2.78E-02					
CACTUs	2.54E-04	1.51E-02	1.21E-02	9.16E-03	2.94E-02					
STUNT (Ours)	2.53E-04	1.46E-02	1.12E-02	9.16E-03	2.90E-02					

STUNT: Simple & Effective Framework for Few-shot Tabular Learning

Summary: We propose a simple yet effective framework for few-shot semi-supervised tabular learning. We propose STUNT = Self-generated Tasks from Unlabeled Table for unsupervised meta-learning

- 1. Generate a diverse tasks from the unlabeled data by treating a column feature as a useful pseudo-label
- 2. Few-shot classification: Effective without using a labeled validation set
- 3. Multi-task learning: Can be instantly adapted to multiple tasks without further training
- 4. Pseudo-validation with STUNT is effective for hyperparameter searching and early stopping

