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Rollout Scheme and Policy Update Scheme
• Several works that adopt trust region learning in multi-agent reinforcement 

learning (MARL) have been proposed. 
• Most algorithms update the agents simultaneously, that is, all agents 

perform policy improvement at the same time and cannot observe the 
change of other agents.

• The simultaneous update scheme brings about the non-stationarity problem, 
i.e., the environment dynamic changes from one agent’s perspective as other 
agents also change their policies.



Rollout Scheme and Policy Update Scheme
• Algorithms that sequentially execute agent-by agent updates allow agents to 

perceive changes made by preceding agents, presenting another perspective 
for analyzing inter-agent interaction.

• Alleviate the problems brought by simultaneous update scheme.

• Algorithms in sequential policy 
update scheme can be further 
categorized by whether a rollout is 
sampled after an agent’s policy is 
updated.



Sequential Policy Update Scheme
• We formulate the update process in sequential policy update scheme as:



Naive Sequential Policy Updating with Single 
Rollout Fails
• An intuitive surrogate objective of agent 𝑖𝑖 can be designed directly 

following the construction of surrogate objective in TRPO:

The uncontrollable term results in that the performance of the future 
joint policy �𝝅𝝅𝒊𝒊 may not be improved even if 𝜶𝜶𝒊𝒊 is well constrained.



Preceding-agent Off-policy Correction
• The uncontrollable term is caused by one ignoring how the updating of its 

preceding agents’ policies influences its advantage function. We 
investigate reducing the uncontrollable term in policy evaluation.

• Preceding-agent Off-policy Correction (PreOPC):

• We prove that 𝐴𝐴𝝅𝝅,�𝝅𝝅𝑖𝑖−1 approximates 𝐴𝐴�𝝅𝝅𝑖𝑖−1 as the agent 𝑖𝑖 update its value 
function.



Tighter Monotonic Improvement Bound
• With PreOPC, the surrogate objective of agent 𝑖𝑖 becomes:



Tighter Monotonic Improvement Bound

• Considering that ∀ 𝑖𝑖, 𝜉𝜉𝑖𝑖 converges to 0, we get tighter monotonic 
improvement bound compared to previous trust region methods in multi-
agent scenarios. A tighter bound improves expected performance by 
optimizing the surrogate objective more effectively.



Agent-by-agent Policy Optimization

• The practical objective of updating agent 𝑖𝑖 becomes:



Agent-by-agent Policy Optimization

• Semi-greedy Agent Selection Rule
• Select the agent to update in order 𝑘𝑘 by

• Adaptive Clipping Parameter
• Adjust the clipping parameters according to 

the updating order:
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