



# ExpressivE: A Spatio-Functional Embedding For Knowledge Graph Completion

Aleksandar Pavlović and Emanuel Sallinger

TU Wien

ICLR 2023 Spotlight Presentation

# Knowledge Graph Completion

- Knowledge graphs are highly incomplete
  - 75% of the triples of Freebase lack a nationality (West et al., 2014)

# **Knowledge Graph Completion**

- Knowledge graphs are highly incomplete
  - 75% of the triples of Freebase lack a nationality (West et al., 2014)

- Knowledge graph completion (KGC)
  - Automatically infer missing triples

# **Knowledge Graph Completion**

- Knowledge graphs are highly incomplete
  - 75% of the triples of Freebase lack a nationality (West et al., 2014)

- Knowledge graph completion (KGC)
  - Automatically infer missing triples

- Knowledge graph embedding models (KGEs)
  - Embed knowledge graphs into vector spaces

(head) Elisabeth

(head) mother\_of Elisabeth





- Functional Models
  - TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)



- Functional Models
  - TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)



- Functional Models
  - TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)





(head)

Elisabeth

mother\_of

(tail)

Alice

- Functional Models
  - TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)



- Spatial Models
  - BoxE (Abboud et al., 2020)





- Functional Models
  - TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)



- Functional Models
  - TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)



- Bilinear Models
  - ComplEx (Trouillon et al., 2016), TuckER (Balazevic et al., 2019)

- Functional Models
  - TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)



mother\_of

- Functional Models
  - TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)



• Generalization capabilities

**Inference Pattern** 

Symmetry:  $r_1(X, Y) \Rightarrow r_1(Y, X)$ Anti-symmetry:  $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$ Inversion:  $r_1(X, Y) \Leftrightarrow r_2(Y, X)$ Comp. def.:  $r_1(X, Y) \land r_2(Y, Z) \Leftrightarrow r_3(X, Z)$ Gen. comp.:  $r_1(X, Y) \land r_2(Y, Z) \Rightarrow r_3(X, Z)$ Hierarchy:  $r_1(X, Y) \Rightarrow r_2(X, Y)$ Intersection:  $r_1(X, Y) \land r_2(X, Y) \Rightarrow r_3(X, Y)$ Mutual exclusion:  $r_1(X, Y) \land r_2(X, Y) \Rightarrow \bot$ 

- Generalization capabilities
  - Analyzing inference patterns that can be captured by a model

**Inference Pattern** 

Symmetry:  $r_1(X, Y) \Rightarrow r_1(Y, X)$ Anti-symmetry:  $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$ Inversion:  $r_1(X, Y) \Leftrightarrow r_2(Y, X)$ Comp. def.:  $r_1(X, Y) \land r_2(Y, Z) \Leftrightarrow r_3(X, Z)$ Gen. comp.:  $r_1(X, Y) \land r_2(Y, Z) \Rightarrow r_3(X, Z)$ Hierarchy:  $r_1(X, Y) \Rightarrow r_2(X, Y)$ Intersection:  $r_1(X, Y) \land r_2(X, Y) \Rightarrow r_3(X, Y)$ Mutual exclusion:  $r_1(X, Y) \land r_2(X, Y) \Rightarrow \bot$ 

- Generalization capabilities
  - Analyzing inference patterns that can be captured by a model
  - Hierarchy and composition are fundamental patterns that have been extensively studied:
    - (Bordes et al., 2013; Sun et al., 2019; Zhang et al., 2019; Lu & Hu, 2020, Yang et al., 2015a; Trouillon et al., 2016; Kazemi & Poole, 2018; Abboud et al., 2020)

Inference Pattern

Symmetry:  $r_1(X, Y) \Rightarrow r_1(Y, X)$ Anti-symmetry:  $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$ Inversion:  $r_1(X, Y) \Leftrightarrow r_2(Y, X)$ Comp. def.:  $r_1(X, Y) \land r_2(Y, Z) \Leftrightarrow r_3(X, Z)$ Gen. comp.:  $r_1(X, Y) \land r_2(Y, Z) \Rightarrow r_3(X, Z)$ Hierarchy:  $r_1(X, Y) \Rightarrow r_2(X, Y)$ Intersection:  $r_1(X, Y) \land r_2(X, Y) \Rightarrow r_3(X, Y)$ Mutual exclusion:  $r_1(X, Y) \land r_2(X, Y) \Rightarrow \bot$ 

- Bilinear and Spatial Models
  - Can represent hierarchy patterns (Trouillon et al., 2016; Abboud et al., 2020)

| Inference Pattern                                                                                                              | BoxE         | ComplEx      | DistMult     |
|--------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|
| Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$                                                                                    | 1            | ~            | 1            |
| Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$                                                                          | $\checkmark$ | 1            | ×            |
| Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$                                                                               | $\checkmark$ | $\checkmark$ | ×            |
| Comp. def.: $r_1(X, Y) \land r_2(Y, Z) \Leftrightarrow r_3(X, Z)$                                                              | ×            | ×            | ×            |
| Gen. comp.: $r_1(X, Y) \wedge r_2(Y, Z) \Rightarrow r_3(X, Z)$                                                                 | X            | X            | ×            |
| Hierarchy: $r_1(X, Y) \Rightarrow r_2(X, Y)$                                                                                   | $\checkmark$ | 1            | 1            |
| Intersection: $r_1(\overline{X},\overline{Y}) \land r_2(\overline{X},\overline{Y}) \Rightarrow r_3(\overline{X},\overline{Y})$ | $\checkmark$ | ×            | ×            |
| Mutual exclusion: $r_1(X, Y) \land r_2(X, Y) \Rightarrow \bot$                                                                 | $\checkmark$ | 1            | $\checkmark$ |

- Bilinear and Spatial Models
  - Can represent hierarchy patterns (Trouillon et al., 2016; Abboud et al., 2020)

X mother\_of  $Y \Rightarrow X$  parent\_of Y

|                                                                                                                                | 10-          |              |              |
|--------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|
| Inference Pattern                                                                                                              | BoxE         | ComplEx      | DistMult     |
| Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$                                                                                    | 1            | 1            | 1            |
| Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$                                                                          | $\checkmark$ | $\checkmark$ | ×            |
| Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$                                                                               | $\checkmark$ | 1            | ×            |
| Comp. def.: $r_1(X, Y) \land r_2(Y, Z) \Leftrightarrow r_3(X, Z)$                                                              | ×            | ×            | ×            |
| Gen. comp.: $r_1(X, Y) \wedge r_2(Y, Z) \Rightarrow r_3(X, Z)$                                                                 | X            | ×            | X            |
| Hierarchy: $r_1(X, Y) \Rightarrow r_2(X, Y)$                                                                                   | $\checkmark$ | 1            | 1            |
| Intersection: $r_1(\overline{X},\overline{Y}) \land r_2(\overline{X},\overline{Y}) \Rightarrow r_3(\overline{X},\overline{Y})$ | $\checkmark$ | ×            | ×            |
| Mutual exclusion: $r_1(X, Y) \land r_2(X, Y) \Rightarrow \bot$                                                                 | $\checkmark$ | 1            | $\checkmark$ |

- Bilinear and Spatial Models
  - Can represent hierarchy patterns (Trouillon et al., 2016; Abboud et al., 2020)
  - **Cannot** represent any notion of **composition** (Sun et al., 2019; Abboud et al., 2020)

X mother\_of  $Y \Rightarrow X$  parent\_of Y

| Inference Pattern                                                                                                                   | BoxE             | ComplEx      | DistMult     |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|--------------|
| Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$                                                                                         | 1                | 1            | 1            |
| Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$                                                                               | $\checkmark$     | $\checkmark$ | ×            |
| Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$                                                                                    | <br>$\checkmark$ | 1            | X            |
| Comp. def.: $r_1(\overline{X}, \overline{Y}) \land r_2(\overline{Y}, \overline{Z}) \Leftrightarrow r_3(\overline{X}, \overline{Z})$ | <br>×            | ×            | X            |
| Gen. comp.: $r_1(X, Y) \land r_2(Y, Z) \Rightarrow r_3(X, Z)$                                                                       | <br>×            | ×            | X            |
| Hierarchy: $r_1(\overline{X}, \overline{Y}) \Rightarrow r_2(\overline{X}, \overline{Y})$                                            | <br>$\checkmark$ |              | ~            |
| Intersection: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow r_3(X, Y)$                                                                    | 1                | ×            | ×            |
| Mutual exclusion: $r_1(X, Y) \land r_2(X, Y) \Rightarrow \bot$                                                                      | $\checkmark$     | 1            | $\checkmark$ |

- Bilinear and Spatial Models
  - Can represent hierarchy patterns (Trouillon et al., 2016; Abboud et al., 2020)
  - **Cannot** represent any notion of **composition** (Sun et al., 2019; Abboud et al., 2020)

#### X mother\_of Y $\land$ Y parent\_of Z $\Leftrightarrow$ X grand\_mother\_of Z

| Inference Pattern                                                                                                                   | BoxE             | ComplEx      | DistMult     |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|--------------|
| Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$                                                                                         | 1                | 1            | 1            |
| Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$                                                                               | $\checkmark$     | 1            | ×            |
| Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$                                                                                    | <br>$\checkmark$ | 1            | X            |
| Comp. def.: $r_1(\overline{X}, \overline{Y}) \land r_2(\overline{Y}, \overline{Z}) \Leftrightarrow r_3(\overline{X}, \overline{Z})$ | <br>×            | x            | X            |
| Gen. comp.: $r_1(X, Y) \land r_2(Y, Z) \Rightarrow r_3(X, Z)$                                                                       | <br>×            | ×            | X            |
| Hierarchy: $r_1(X, Y) \Rightarrow r_2(X, Y)$                                                                                        | <br>$\checkmark$ |              | $\checkmark$ |
| Intersection: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow r_3(X, Y)$                                                                    | $\checkmark$     | ×            | ×            |
| Mutual exclusion: $r_1(X, Y) \land r_2(X, Y) \Rightarrow \bot$                                                                      | $\checkmark$     | $\checkmark$ | $\checkmark$ |

- Functional Models
  - Can represent a limited notion of composition (Zhang et al., 2019; Abboud et al., 2020; Lu & Hu, 2020; Gao et al., 2020)

#### X mother\_of Y $\land$ Y parent\_of Z $\Leftrightarrow$ X grand\_mother\_of Z

| Inference Pattern                                                                                                                   | RotatE       | TransE       |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
| Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$                                                                                         | 1            | ×            |
| Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$                                                                               | 1            | $\checkmark$ |
| Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$                                                                                    | 1            | ~            |
| Comp. def.: $r_1(\overline{X}, \overline{Y}) \land r_2(\overline{Y}, \overline{Z}) \Leftrightarrow r_3(\overline{X}, \overline{Z})$ | <u></u>      | $\checkmark$ |
| Gen. comp.: $r_1(X, Y) \wedge r_2(Y, Z) \Rightarrow r_3(X, Z)$                                                                      | ×            | X            |
| Hierarchy: $r_1(X, Y) \Rightarrow r_2(X, Y)$                                                                                        | ×            | ×            |
| Intersection: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow r_3(X, Y)$                                                                    | $\checkmark$ | $\checkmark$ |
| Mutual exclusion: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow \bot$                                                                     | 1            | $\checkmark$ |

- Functional Models
  - Can represent a limited notion of composition (Zhang et al., 2019; Abboud et al., 2020; Lu & Hu, 2020; Gao et al., 2020)

#### X mother\_of Y $\land$ Y parent\_of Z $\Rightarrow$ X grand\_parent\_of Z X father\_of Y $\land$ Y parent\_of Z $\Rightarrow$ X grand\_parent\_of Z

| Inference Pattern                                                                                                                   | RotatE       | TransE       |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
| Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$                                                                                         | 1            | X            |
| Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$                                                                               | $\checkmark$ | $\checkmark$ |
| Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$                                                                                    | 1            | 1            |
| Comp. def.: $r_1(\overline{X}, \overline{Y}) \land r_2(\overline{Y}, \overline{Z}) \Leftrightarrow r_3(\overline{X}, \overline{Z})$ | $\checkmark$ | $\checkmark$ |
| Gen. comp.: $r_1(X, Y) \land r_2(Y, Z) \Rightarrow r_3(X, Z)$                                                                       | ×            | X            |
| Hierarchy: $r_1(X, Y) \Rightarrow r_2(X, Y)$                                                                                        | ×            | ×            |
| Intersection: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow r_3(X, Y)$                                                                    | $\checkmark$ | 1            |
| Mutual exclusion: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow \bot$                                                                     | $\checkmark$ | $\checkmark$ |

- Functional Models
  - Can represent a limited notion of composition (Zhang et al., 2019; Abboud et al., 2020; Lu & Hu, 2020; Gao et al., 2020)

X mother\_of Y  $\land$  Y parent\_of Z  $\Rightarrow$  X grand\_parent\_of Z X father\_of Y  $\land$  Y parent\_of Z  $\Rightarrow$  X grand\_parent\_of Z mother\_of = father\_of

| Inference Pattern                                                                                                                   | RotatE       | TransE       |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
| Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$                                                                                         | 1            | ×            |
| Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$                                                                               | $\checkmark$ | $\checkmark$ |
| Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$                                                                                    | 1            | $\checkmark$ |
| Comp. def.: $r_1(\overline{X}, \overline{Y}) \land r_2(\overline{Y}, \overline{Z}) \Leftrightarrow r_3(\overline{X}, \overline{Z})$ | $\checkmark$ | $\checkmark$ |
| Gen. comp.: $r_1(X, Y) \land r_2(Y, Z) \Rightarrow r_3(X, Z)$                                                                       | ×            | X            |
| Hierarchy: $r_1(X, \overline{Y}) \Rightarrow r_2(\overline{X}, \overline{Y})$                                                       | X            | ×            |
| Intersection: $r_1(X, Y) \land r_2(X, Y) \Rightarrow r_3(X, Y)$                                                                     | $\checkmark$ | $\checkmark$ |
| Mutual exclusion: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow \bot$                                                                     | 1            | 1            |

(Abboud et al., 2020)

#### • Functional Models

- Can represent a limited notion of composition (Zhang et al., 2019; Abboud et al., 2020; Lu & Hu, 2020; Gao et al., 2020)
- **Cannot** represent any notion of **hierarchy** (Abboud et al., 2020)

| Inference Pattern                                                                                                       | RotatE       | TransE       |
|-------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
| Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$                                                                             | 1            | ×            |
| Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$                                                                   | $\checkmark$ | $\checkmark$ |
| Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$                                                                        | 1            | 1            |
| Comp. def.: $r_1(X, Y) \land r_2(Y, Z) \Leftrightarrow r_3(X, Z)$                                                       | $\checkmark$ | $\checkmark$ |
| Gen. comp.: $r_1(X, Y) \wedge r_2(Y, Z) \Rightarrow r_3(X, Z)$                                                          | ×            | X            |
| Hierarchy: $r_1(\overline{X}, \overline{Y}) \Rightarrow r_2(\overline{X}, \overline{Y})$                                | ×            | X            |
| Intersection: $r_1(X, \overline{Y}) \wedge r_2(\overline{X}, \overline{Y}) \Rightarrow r_3(\overline{X}, \overline{Y})$ |              | $\checkmark$ |
| Mutual exclusion: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow \bot$                                                         | $\checkmark$ | $\checkmark$ |

| Inference Pattern                                                  | RotatE       | TransE       | BoxE         | ComplEx      | DistMult     |
|--------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|
| Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$                        | 1            | ×            | 1            | $\checkmark$ | $\checkmark$ |
| Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$              | $\checkmark$ | $\checkmark$ | $\checkmark$ | 1            | X            |
| Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$                   | 1            | 1            | 1            | 1            | ×            |
| Comp. def.: $r_1(X, Y) \wedge r_2(Y, Z) \Leftrightarrow r_3(X, Z)$ | $\checkmark$ | $\checkmark$ | ×            | ×            | ×            |
| Gen. comp.: $r_1(X, Y) \wedge r_2(Y, Z) \Rightarrow r_3(X, Z)$     | ×            | ×            | ×            | ×            | ×            |
| Hierarchy: $r_1(X, Y) \Rightarrow r_2(X, Y)$                       | ×            | ×            | $\checkmark$ | 1            | $\checkmark$ |
| Intersection: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow r_3(X, Y)$   | 1            | $\checkmark$ | $\checkmark$ | ×            | ×            |
| Mutual exclusion: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow \bot$    | $\checkmark$ | $\checkmark$ | 1            | $\checkmark$ | $\checkmark$ |

- Challenge 1:
  - Contemporary KGEs cannot capture general composition

| Inference Pattern                                                                        | RotatE       | TransE       | BoxE         | ComplEx      | DistMult     |
|------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|
| Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$                                              | 1            | ×            | 1            | $\checkmark$ | $\checkmark$ |
| Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$                                    | $\checkmark$ | $\checkmark$ | $\checkmark$ | 1            | ×            |
| Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$                                         | 1            | 1            | 1            | 1            | ×            |
| Comp. def.: $r_1(X, Y) \wedge r_2(Y, Z) \Leftrightarrow r_3(X, Z)$                       | $\checkmark$ | $\checkmark$ | ×            | ×            | X            |
| Gen. comp.: $r_1(X, Y) \land r_2(Y, Z) \Rightarrow r_3(X, Z)$                            | ×            | ×            | ×            | ×            | ×            |
| Hierarchy: $r_1(\overline{X}, \overline{Y}) \Rightarrow r_2(\overline{X}, \overline{Y})$ | ×            | X            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Intersection: $r_1(X, Y) \land r_2(X, Y) \Rightarrow r_3(X, Y)$                          | 1            | 1            | $\checkmark$ | ×            | ×            |
| Mutual exclusion: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow \bot$                          | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |

- Challenge 1:
  - Contemporary KGEs cannot capture general composition

- Challenge 2:
  - Capturing composition and hierarchy jointly is an open problem

| Inference Pattern                                                                                                                   | RotatE | TransE       | BoxE         | ComplEx      | DistMult     |
|-------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|--------------|--------------|--------------|
| Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$                                                                                         | 1      | ×            | 1            | $\checkmark$ | $\checkmark$ |
| Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$                                                                               | 1      | $\checkmark$ | $\checkmark$ | 1            | ×            |
| Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$                                                                                    |        | 1            | 1            | 1            | ×            |
| Comp. def.: $r_1(\overline{X}, \overline{Y}) \land r_2(\overline{Y}, \overline{Z}) \Leftrightarrow r_3(\overline{X}, \overline{Z})$ |        | $\checkmark$ | ×            | ×            | X            |
| Gen. comp.: $r_1(X, Y) \land r_2(Y, Z) \Rightarrow r_3(X, Z)$                                                                       | ×      | ×            | ×            | ×            | ×            |
| Hierarchy: $r_1(X, Y) \Rightarrow r_2(X, Y)$                                                                                        | ×      | ×            | 1            | 1            | $\checkmark$ |
| Intersection: $r_1(X, \overline{Y}) \wedge r_2(\overline{X}, \overline{Y}) \Rightarrow r_3(\overline{X}, \overline{Y})$             | ~      | 1            | $\checkmark$ | ×            | ×            |
| Mutual exclusion: $r_1(X, Y) \land r_2(X, Y) \Rightarrow \bot$                                                                      | 1      | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |

- Challenge 1:
  - Contemporary KGEs cannot capture general composition

- Challenge 2:
  - Capturing composition and hierarchy jointly is an open problem

|                                                                    | <u> </u>     |              |              |              |              |              |
|--------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Inference Pattern                                                  | ExpressivE   | RotatE       | TransE       | BoxE         | ComplEx      | DistMult     |
| Symmetry: $r_1(X, Y) \Rightarrow r_1(Y, X)$                        | $\checkmark$ | $\checkmark$ | ×            | 1            | 1            | 1            |
| Anti-symmetry: $r_1(X, Y) \Rightarrow \neg r_1(Y, X)$              | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | ×            |
| Inversion: $r_1(X, Y) \Leftrightarrow r_2(Y, X)$                   | 1 🗸 1        | 1            | 1            | $\checkmark$ | $\checkmark$ | ×            |
| Comp. def.: $r_1(X, Y) \wedge r_2(Y, Z) \Leftrightarrow r_3(X, Z)$ | <i>✓</i>     | $\checkmark$ | 1            | ×            | ×            | ×            |
| Gen. comp.: $r_1(X, Y) \wedge r_2(Y, Z) \Rightarrow r_3(X, Z)$     | i √ i        | ×            | ×            | ×            | ×            | ×            |
| Hierarchy: $r_1(X, Y) \Rightarrow r_2(X, Y)$                       |              | ×            | ×            | 1            | 1            | 1            |
| Intersection: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow r_3(X, Y)$   | 1            | 1            | $\checkmark$ | 1            | ×            | ×            |
| Mutual exclusion: $r_1(X, Y) \wedge r_2(X, Y) \Rightarrow \bot$    |              | $\checkmark$ | 1            | $\checkmark$ | 1            | $\checkmark$ |
|                                                                    | <u>'</u>     |              |              |              |              |              |

# Challenge: Expressiveness

- Spatial and Bilinear Models
  - Are fully expressive (except DistMult (Yang et al., 2015a))

# Challenge: Expressiveness

- Spatial and Bilinear Models
  - Are fully expressive (except DistMult (Yang et al., 2015a))

- Functional Models
  - Not fully expressive, i.e., **cannot** represent any arbitrary knowledge graph
  - **Struggle** with one-to-many, many-to-one, and many-to-many relations
# Challenge: Expressiveness

- Spatial and Bilinear Models
  - Are fully expressive (except DistMult (Yang et al., 2015a))

- Functional Models
  - Not fully expressive, i.e., **cannot** represent any arbitrary knowledge graph
  - **Struggle** with one-to-many, many-to-one, and many-to-many relations

- Challenge 3:
  - Model that **is** fully expressive
  - Can handle one-to-many, many-to-one, and many-to-many relations
  - While **keeping** the ability of functional models to capture composition

# ExpressivE: Model Definition

# ExpressivE: Model Definition

| (head) | parent | of | (tail) |
|--------|--------|----|--------|
| Robin  |        |    | Ash    |





























# Fully Expressiveness

**Theorem 5.1 (Expressive Power)** *ExpressivE can capture any arbitrary graph G over*  $\mathbf{R}$  *and*  $\mathbf{E}$  *if the embedding dimensionality d is at least in*  $O(|\mathbf{E}| * |\mathbf{R}|)$ .















**Theorem 5.4** *ExpressivE captures compositional definition and general composition.* 

**Theorem 5.4** *ExpressivE captures compositional definition and general composition.* 

X mother\_of Y  $\land$  Y parent\_of Z  $\Leftrightarrow$  X grand\_mother\_of Z



**Theorem 5.4** *ExpressivE captures compositional definition and general composition*.

X mother\_of Y  $\land$  Y parent\_of Z  $\Leftrightarrow$  X grand\_mother\_of Z



**Theorem 5.4** *ExpressivE captures compositional definition and general composition*.

X mother\_of Y  $\land$  Y parent\_of Z  $\Leftrightarrow$  X grand\_mother\_of Z



**Theorem 5.4** *ExpressivE captures compositional definition and general composition*.

X mother\_of Y ∧ Y parent\_of Z ⇔ X grand\_mother\_of Z X father\_of Y ∧ Y parent\_of Z ⇔ X grand\_father\_of Z



**Theorem 5.4** *ExpressivE captures compositional definition and general composition*.

X mother\_of Y ∧ Y parent\_of Z ⇔ X grand\_mother\_of Z X father\_of Y ∧ Y parent\_of Z ⇔ X grand\_father\_of Z





**Theorem 5.4** *ExpressivE captures compositional definition and general composition.* 

X mother\_of Y  $\land$  Y parent\_of Z  $\Rightarrow$  X grand\_parent\_of Z X father\_of Y  $\land$  Y parent\_of Z  $\Rightarrow$  X grand\_parent\_of Z





**Theorem 5.4** *ExpressivE captures compositional definition and general composition.* 

X mother\_of Y  $\land$  Y parent\_of Z  $\Rightarrow$  X grand\_parent\_of Z X father\_of Y  $\land$  Y parent\_of Z  $\Rightarrow$  X grand\_parent\_of Z



**Theorem 5.4** *ExpressivE captures compositional definition and general composition.* 

X mother\_of Y  $\land$  Y parent\_of Z  $\Rightarrow$  X grand\_parent\_of Z X father\_of Y  $\land$  Y parent\_of Z  $\Rightarrow$  X grand\_parent\_of Z



Representing relations as regions naturally allows for one-to-many, many-to-one, and many-to-many relations

#### **Evaluation on KGC**

| Family    | Model                               | WN18RR                     |                      |                             | FB15k-237                   |                            |                            |                             |                             |
|-----------|-------------------------------------|----------------------------|----------------------|-----------------------------|-----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|
| č Spatial | Base ExpressivE<br>Func. ExpressivE | H@1<br><b>.464</b><br>.407 | H@3<br>.522<br>.519  | H@10<br>.597<br><b>.619</b> | MRR<br>.508<br>.482         | H@1<br>.243<br><b>.256</b> | H@3<br>.366<br><b>.387</b> | H@10<br>.512<br>.535        | MRR<br>.333<br><b>.350</b>  |
| Func. &   | BoxE<br>RotatE<br>TransE            | .400<br>.428<br>.013       | .472<br>.492<br>.401 | .541<br>.571<br>.529        | .451<br>.476<br>.223        | .238<br>.241<br>.233       | .374<br>.375<br>.372       | <b>.538</b><br>.533<br>.531 | .337<br>.338<br>.332        |
| Bilinear  | DistMult<br>ComplEx<br>TuckER       | -<br>.443                  | -<br>.482            | .531<br><b>.547</b><br>.526 | .452<br><b>.475</b><br>.470 | -<br>.266                  | -<br>-<br>.394             | .531<br>.536<br><b>.544</b> | .343<br>.348<br><b>.358</b> |

#### Best-published MRR and Hit@K:

BoxE: (Abboud et al., 2020) TransE and RotatE: (Sun et al., 2019) TuckER: (Balazevic et al., 2019) DistMult and ComplEx: (Ruffinelli et al., 2020; Yang et al., 2015b)

## **Evaluation on KGC**

| Family          | Model                                                           | WN18RR                                      |                                             |                                              |                                             | FB15k-237                                   |                                                    |                                                     |                                             |
|-----------------|-----------------------------------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------------|-----------------------------------------------------|---------------------------------------------|
| Func. & Spatial | Base ExpressivE<br>Func. ExpressivE<br>BoxE<br>RotatE<br>TransE | H@1<br>.464<br>.407<br>.400<br>.428<br>.013 | H@3<br>.522<br>.519<br>.472<br>.492<br>.401 | H@10<br>.597<br>.619<br>.541<br>.571<br>.529 | MRR<br>.508<br>.482<br>.451<br>.476<br>.223 | H@1<br>.243<br>.256<br>.238<br>.241<br>.233 | H@3<br>.366<br><b>.387</b><br>.374<br>.375<br>.372 | H@10<br>.512<br>.535<br><b>.538</b><br>.533<br>.531 | MRR<br>.333<br>.350<br>.337<br>.338<br>.332 |
| Bilinear        | DistMult<br>ComplEx<br>TuckER                                   | -<br>.443                                   | -<br>.482                                   | .531<br><b>.547</b><br>.526                  | .452<br><b>.475</b><br>.470                 | - <u>-</u> –<br>.266                        |                                                    | .531<br>.536<br><b>.544</b>                         | .343<br>.348<br>.358                        |

#### Best-published MRR and Hit@K:

BoxE: (Abboud et al., 2020) TransE and RotatE: (Sun et al., 2019) TuckER: (Balazevic et al., 2019) DistMult and ComplEx: (Ruffinelli et al., 2020; Yang et al., 2015b)
# Evaluation on KGC

Г

| Family | Model            | WN18RR |      |      |      | FB15k-237 |      |      |      |
|--------|------------------|--------|------|------|------|-----------|------|------|------|
| ial    |                  | H@1    | H@3  | H@10 | MRR  | H@1       | H@3  | H@10 | MRR  |
| oat    | Base ExpressivE  | .464   | .522 | .597 | .508 | .243      | .366 | .512 | .333 |
| SI     | Func. ExpressivE | .407   | .519 | .619 | .482 | .256      | .387 | .535 | .350 |
| Š      | BoxE             | .400   | .472 | .541 | .451 | .238      | .374 | .538 | .337 |
| nc.    | RotatE           | .428   | .492 | .571 | .476 | .241      | .375 | .533 | .338 |
| Fu     | TransE           | .013   | .401 | .529 | .223 | .233      | .372 | .531 | .332 |
| ar     | DistMult         | -      | -    | .531 | .452 |           | -    | .531 | .343 |
| ine    | ComplEx          | -      | -    | .547 | .475 | -         | -    | .536 | .348 |
| Bil    | TuckER           | .443   | .482 | .526 | .470 | .266      | .394 | .544 | .358 |
|        |                  |        |      |      |      |           |      |      |      |

Best-published MRR and Hit@K:

BoxE: (Abboud et al., 2020) TransE and RotatE: (Sun et al., 2019) TuckER: (Balazevic et al., 2019) DistMult and ComplEx: (Ruffinelli et al., 2020; Yang et al., 2015b)

### **Evaluation on KGC**

| Family | Model            | WN18RR               |             |                    |             | FB15k-237            |              |              |             |
|--------|------------------|----------------------|-------------|--------------------|-------------|----------------------|--------------|--------------|-------------|
| patial | Base ExpressivE  | H@1<br><b>.464</b>   | H@3<br>.522 | H@10<br>.597       | MRR<br>.508 | H@1<br>.243          | H@3<br>.366  | H@10<br>.512 | MRR<br>.333 |
| & S    | Func. ExpressivE | .407                 | .519        | <b>.619</b><br>541 | .482        | <b>.256</b>          | <b>.387</b>  | .535         | <b>.350</b> |
| Func.  | RotatE<br>TransE | .400<br>.428<br>.013 | .492        | .571               | .476        | .238<br>.241<br>.233 | .375<br>.372 | .533         | .338        |
| ar     | DistMult         | -                    | -           | .531               | .452        | -                    | -            | .531         | .343        |
| line   | ComplEx          | -                    | -           | .547               | .475        | -                    | -            | .536         | .348        |
| Bi     | TuckER           | .443                 | .482        | .526               | .470        | .266                 | .394         | .544         | .358        |
|        |                  |                      |             |                    |             |                      |              | 1            |             |

|                                                                      | Benchmark | Dimensionality | ExpressivE | BoxE  | RotatE |
|----------------------------------------------------------------------|-----------|----------------|------------|-------|--------|
| Best-published MPP and Hit@K                                         | WN18RR    | 500            | 467MB      | 930MB | 930MB  |
| BoxE: (Abboud et al., 2020)<br>TransE and RotatE: (Sun et al., 2019) | FB15K-237 | 1000           | 300MB      | 68/MB | 68/MB  |
|                                                                      |           |                |            |       |        |

TransE TuckER: (Balazevic et al., 2019)

DistMult and ComplEx: (Ruffinelli et al., 2020; Yang et al., 2015b)

### **Evaluation on KGC**

|                           | Family                                   | Model      |                  | WN18RR |            |         |       | FB15k-237 |       |      |      |  |
|---------------------------|------------------------------------------|------------|------------------|--------|------------|---------|-------|-----------|-------|------|------|--|
|                           | ial                                      |            |                  | H@1    | H@3        | H@10    | MRR   | H@1       | H@3   | H@10 | MRR  |  |
|                           | pat                                      | Base Ex    | pressivE         | .464   | .522       | .597    | .508  | .243      | .366  | .512 | .333 |  |
|                           | S                                        | Func. Ex   | <b>kpressivE</b> | .407   | .519       | .619    | .482  | .256      | .387  | .535 | .350 |  |
|                           | 8<br>S                                   | BoxE       | _                | .400   | .472       | .541    | .451  | .238      | .374  | .538 | .337 |  |
|                           | nc.                                      | RotatE     |                  | .428   | .492       | .571    | .476  | .241      | .375  | .533 | .338 |  |
|                           | Fu                                       | TransE     |                  | .013   | .401       | .529    | .223  | .233      | .372  | .531 | .332 |  |
| ,                         | ar                                       | DistMul    | t                | -      | -          | .531    | .452  | -         | -     | .531 | .343 |  |
|                           | ine                                      | ComplE     | X                | -      | -          | .547    | .475  | -         | -     | .536 | .348 |  |
|                           | Bil                                      | TuckER     |                  | .443   | .482       | .526    | .470  | .266      | .394  | .544 | .358 |  |
|                           |                                          | . –        |                  |        |            |         |       |           |       | 1    |      |  |
|                           |                                          |            | Benchmark        | Dime   | nsionality | Express | vE Bo | xE R      | otatE |      |      |  |
|                           |                                          |            | WN18RR           | 500    |            | 467MB   | 930   | OMB 93    | BOMB  | 1    |      |  |
| Best-public<br>BoxE: (Abl | ished MRR and I<br>boud et al 2020)      | Hit@K:     | FB15k-237        | 1000   |            | 366MB   | 687   | 7MB 68    | 87MB  | •    |      |  |
| TransE and<br>TuckER: (E  | d RotatE: (Sun et<br>Balazevic et al., 2 | al., 2019) |                  |        |            |         |       |           |       | •    |      |  |

DistMult and ComplEx: (Ruffinelli et al., 2020; Yang et al., 2015b)

#### **Additional Results**

| Relation Name               | ExpressivE | RotatE | BoxE         |
|-----------------------------|------------|--------|--------------|
| member_meronym              | 0.233      | 0.199  | 0.226        |
| hypernym                    | 0.189      | 0.162  | 0.159        |
| has_part                    | 0.198      | 0.187  | 0.168        |
| instance_hypernym           | 0.352      | 0.326  | 0.425        |
| synset_domain_topic_of      | 0.363      | 0.384  | 0.323        |
| member_of_domain_usage      | 0.288      | 0.333  | 0.360        |
| member_of_domain_region     | 0.123      | 0.188  | 0.189        |
| also_see                    | 0.649      | 0.631  | 0.517        |
| derivationally_related_from | 0.956      | 0.943  | 0.902        |
| similar_to                  | 1.000      | 1.000  | 1.000        |
| verb_group                  | 0.972      | 0.843  | <u>0.876</u> |

| Task        |       | Predict | ting Hea | d     | Predicting Tail |           |       |          |
|-------------|-------|---------|----------|-------|-----------------|-----------|-------|----------|
| Cardinality | 1-1   | 1-N     | N-1      | N-N   | 1-1             | 1-N       | N-1   | N-N      |
| ExpressivE  | 0.976 | 0.290   | 0.105    | 0.941 | 0.976           | 0.141     | 0.327 | 0.938    |
| RotatE      | 0.833 | 0.294   | 0.103    | 0.930 | 0.875           | 0.107     | 0.288 | 0.925    |
| BoxE        | 0.877 | 0.272   | 0.146    | 0.883 | 0.893           | 0.147     | 0.246 | 0.884    |
|             |       |         |          |       |                 |           |       | 7.       |
| Head Rel.   | _     | _verb_  | group    |       | -               | _also_see | •     | _syn_dto |
| Model       | $S_1$ | $C_2$   | $C_3$    | $C_4$ | $C_5$           | $C_6$     | $S_7$ | $C_8$    |
| Base Exp.   | 1.000 | 1.000   | 1.000    | 1.000 | 0.818           | 0.907     | 0.985 | 0.621    |
| RotatE      | 0.865 | 0.760   | 0.760    | 0.760 | 0.771           | 0.893     | 0.975 | 0.599    |
| BoxE        | 0.906 | 0.801   | 0.806    | 0.806 | 0.632           | 0.645     | 0.727 | 0.547    |

• ExpressivE: A spatio-functional KGE that

- ExpressivE: A spatio-functional KGE that
  - is **fully expressive** (first among functional KGEs)

- ExpressivE: A spatio-functional KGE that
  - is **fully expressive** (first among functional KGEs)
  - captures composition **and** hierarchy jointly

- ExpressivE: A spatio-functional KGE that
  - is **fully expressive** (first among functional KGEs)
  - captures composition **and** hierarchy jointly
  - captures general composition

- ExpressivE: A spatio-functional KGE that
  - is **fully expressive** (first among functional KGEs)
  - captures composition **and** hierarchy jointly
  - captures general composition

• Additionally, ExpressivE

- ExpressivE: A spatio-functional KGE that
  - is **fully expressive** (first among functional KGEs)
  - captures composition **and** hierarchy jointly
  - o captures general composition

- Additionally, ExpressivE
  - allows for an **intuitive** geometric interpretation

- ExpressivE: A spatio-functional KGE that
  - is **fully expressive** (first among functional KGEs)
  - captures composition **and** hierarchy jointly
  - o captures general composition

- Additionally, ExpressivE
  - allows for an **intuitive** geometric interpretation
  - can handle **one-to-many, many-to-one, and many-to-many** relations

- ExpressivE: A spatio-functional KGE that
  - is **fully expressive** (first among functional KGEs)
  - captures composition **and** hierarchy jointly
  - o captures general composition

- Additionally, ExpressivE
  - allows for an **intuitive** geometric interpretation
  - can handle **one-to-many, many-to-one, and many-to-many** relations
  - achieves very **strong** performance on KGC, while solely using **half** the number of parameters of its closest relatives

Thank you