ExpressivE: A Spatio-Functional Embedding For Knowledge Graph Completion

Aleksandar Pavlović and Emanuel Sallinger
TU Wien

Knowledge Graph Completion

- Knowledge graphs are highly incomplete
- 75% of the triples of Freebase lack a nationality (West et al., 2014)

Knowledge Graph Completion

- Knowledge graphs are highly incomplete
- 75\% of the triples of Freebase lack a nationality (West et al., 2014)
- Knowledge graph completion (KGC)
- Automatically infer missing triples

Knowledge Graph Completion

- Knowledge graphs are highly incomplete
- 75\% of the triples of Freebase lack a nationality (West et al., 2014)
- Knowledge graph completion (KGC)
- Automatically infer missing triples
- Knowledge graph embedding models (KGEs)
- Embed knowledge graphs into vector spaces

Knowledge Graphs

Knowledge Graphs

Elisabeth

Knowledge Graphs

> (head)
> Elisabeth $\xrightarrow{\text { mother_of }}$

Knowledge Graphs

Knowledge Graph Embedding Models

(head) mother_of
Elisabeth \longrightarrow

Knowledge Graph Embedding Models

- Functional Models
- TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)

(head)
Elisabeth

Alice

Knowledge Graph Embedding Models

- Functional Models
- TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)

Elisabeth

Knowledge Graph Embedding Models

- Functional Models
- TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)

Knowledge Graph Embedding Models

- Functional Models
- TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)
- Spatial Models

- BoxE (Abboud et al., 2020)

Knowledge Graph Embedding Models

- Functional Models
- TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)
- Spatial Models

- BoxE (Abboud et al., 2020)

Elisabeth
Alice

Knowledge Graph Embedding Models

- Functional Models
- TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)
- Spatial Models

- BoxE (Abboud et al., 2020)

Elisabeth
Alice

Knowledge Graph Embedding Models

- Functional Models
- TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)

Knowledge Graph Embedding Models

- Functional Models
- TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)
- Spatial Models

- BoxE (Abboud et al., 2020)

Elisabeth

- Bilinear Models
- ComplEx (Trouillon et al., 2016), TuckER (Balazevic et al., 2019)

Knowledge Graph Embedding Models

- Functional Models
- TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)
- Spatial Models

- BoxE (Abboud et al., 2020)

Elisabeth

- Bilinear Models
- ComplEx (Trouillon et al., 2016), TuckER (Balazevic et al., 2019)

Knowledge Graph Embedding Models

- Functional Models
- TransE (Bordes et al., 2013), RotatE (Sun et al., 2019)
- Spatial Models

- BoxE (Abboud et al., 2020)

Elisabeth

- Bilinear Models
- ComplEx (Trouillon et al., 2016), TuckER (Balazevic et al., 2019)
- Neural Models

Inference Patterns

- Generalization capabilities

```
Inference Pattern
    Symmetry: \(r_{1}(X, Y) \Rightarrow r_{1}(Y, X)\)
    Anti-symmetry: \(r_{1}(X, Y) \Rightarrow \neg r_{1}(Y, X)\)
    Inversion: \(r_{1}(X, Y) \Leftrightarrow r_{2}(Y, X)\)
    Comp. def.: \(r_{1}(X, Y) \wedge r_{2}(Y, Z) \Leftrightarrow r_{3}(X, Z)\)
    Gen. comp.: \(r_{1}(X, Y) \wedge r_{2}(Y, Z) \Rightarrow r_{3}(X, Z)\)
    Hierarchy: \(r_{1}(X, Y) \Rightarrow r_{2}(X, Y)\)
    Intersection: \(r_{1}(X, Y) \wedge r_{2}(X, Y) \Rightarrow r_{3}(X, Y)\)
    Mutual exclusion: \(r_{1}(X, Y) \wedge r_{2}(X, Y) \Rightarrow \perp\)
```


Inference Patterns

- Generalization capabilities
- Analyzing inference patterns that can be captured by a model

```
Inference Pattern
Symmetry: \(r_{1}(X, Y) \Rightarrow r_{1}(Y, X)\)
Anti-symmetry: \(r_{1}(X, Y) \Rightarrow \neg r_{1}(Y, X)\)
Inversion: \(r_{1}(X, Y) \Leftrightarrow r_{2}(Y, X)\)
Comp. def.: \(r_{1}(X, Y) \wedge r_{2}(Y, Z) \Leftrightarrow r_{3}(X, Z)\)
Gen. comp.: \(r_{1}(X, Y) \wedge r_{2}(Y, Z) \Rightarrow r_{3}(X, Z)\)
Hierarchy: \(r_{1}(X, Y) \Rightarrow r_{2}(X, Y)\)
Intersection: \(r_{1}(X, Y) \wedge r_{2}(X, Y) \Rightarrow r_{3}(X, Y)\)
Mutual exclusion: \(r_{1}(X, Y) \wedge r_{2}(X, Y) \Rightarrow \perp\)
```


Inference Patterns

- Generalization capabilities
- Analyzing inference patterns that can be captured by a model
- Hierarchy and composition are fundamental patterns that have been extensively studied:
- (Bordes et al., 2013; Sun et al., 2019; Zhang et al., 2019; Lu \& Hu, 2020, Yang et al., 2015a; Trouillon et al., 2016; Kazemi \& Poole, 2018; Abboud et al., 2020)

```
Inference Pattern
Symmetry: \(r_{1}(X, Y) \Rightarrow r_{1}(Y, X)\)
Anti-symmetry: \(r_{1}(X, Y) \Rightarrow \neg r_{1}(Y, X)\)
Inversion: \(r_{1}\left(X_{2} Y\right) \Leftrightarrow r_{2}(Y, X)\)
Comp. def.: \(r_{1}(X, Y) \wedge r_{2}(Y, Z) \Leftrightarrow r_{3}(X, \bar{Z})\)
'Gen. comp.: \(r_{1}(X, Y) \wedge r_{2}(Y, Z) \Rightarrow r_{3}(X, Z)\) !
LHierarchy: \(r_{1}(X, Y) \Rightarrow r_{2}(X, Y)-\overline{r_{1}}(\bar{X}-\overline{1}\)
Intersection: \(r_{1}(\bar{X}, \bar{Y}) \wedge \bar{r}_{2}(\bar{X}, \bar{Y}) \Longrightarrow \bar{r}_{3}(\bar{X}, \bar{Y})\)
Mutual exclusion: \(r_{1}(X, Y) \wedge r_{2}(X, Y) \Rightarrow \perp\)
```


Inference Patterns

- Bilinear and Spatial Models
- Can represent hierarchy patterns (Trouillon et al., 2016; Abboud et al., 2020)

Inference Pattern	BoxE	ComplEx	DistMult
Symmetry: $r_{1}(X, Y) \Rightarrow r_{1}(Y, X)$	\checkmark	\checkmark	\checkmark
Anti-symmetry: $r_{1}(X, Y) \Rightarrow \neg r_{1}(Y, X)$	\checkmark	\checkmark	x
Inversion: $r_{1}(X, Y) \Leftrightarrow r_{2}(Y, X)$	\checkmark	\checkmark	x
Comp. def.: $r_{1}(X, Y) \wedge r_{2}(Y, Z) \Leftrightarrow r_{3}(X, Z)$	x	x	x
Gen. comp.: $r_{1}(X, \underline{Y}) \wedge r_{2}(\underline{Y}, \underline{Z}) \Rightarrow r_{3}(\underline{X}, \underline{Z})$	\underline{x}	\underline{x}	x
Hierarchy: $r_{1}(X, Y) \Rightarrow r_{2}(X, Y)$			
Intersection: $\left.r_{1} \overline{(} \bar{X}, \bar{Y}\right) \wedge r_{2}(\bar{X}, \bar{Y}) \Rightarrow r_{3}(\bar{X}, \bar{Y})$		x	\bar{x}
Mutual exclusion: $r_{1}(X, Y) \wedge r_{2}(X, Y) \Rightarrow \perp$	\checkmark	\checkmark	\checkmark

Inference Patterns

- Bilinear and Spatial Models
- Can represent hierarchy patterns (Trouillon et al., 2016; Abboud et al., 2020)

$$
X \text { mother_of } Y \Rightarrow X \text { parent_of } Y
$$

Inference Pattern	BoxE	ComplEx	DistMult
Symmetry: $r_{1}(X, Y) \Rightarrow r_{1}(Y, X)$	\checkmark	\checkmark	\checkmark
Anti-symmetry: $r_{1}(X, Y) \Rightarrow \neg r_{1}(Y, X)$	\checkmark	\checkmark	x
Inversion: $r_{1}(X, Y) \Leftrightarrow r_{2}(Y, X)$	\checkmark	\checkmark	x
Comp. def.: $r_{1}(X, Y) \wedge r_{2}(Y, Z) \Leftrightarrow r_{3}(X, Z)$	x	x	x
Gen. comp.: $r_{1}(X, \underline{Y}) \wedge r_{2}(\underline{Y}, \underline{Z}) \Rightarrow r_{3}(\underline{X}, \underline{Z})$	\underline{x}	\underline{x}	x
Hierarchy: $r_{1}(X, Y) \Rightarrow r_{2}(X, Y)$			
Intersection: $\left.r_{1} \overline{(} \bar{X}, \bar{Y}\right) \wedge r_{2}(\bar{X}, \bar{Y}) \Rightarrow r_{3}(\bar{X}, \bar{Y})$		x	\bar{x}
Mutual exclusion: $r_{1}(X, Y) \wedge r_{2}(X, Y) \Rightarrow \perp$	\checkmark	\checkmark	\checkmark

Inference Patterns

- Bilinear and Spatial Models
- Can represent hierarchy patterns (Trouillon et al., 2016; Abboud et al., 2020)
- Cannot represent any notion of composition (Sun et al., 2019; Abboud et al., 2020)

$$
X \text { mother_of } Y \Rightarrow X \text { parent_of } Y
$$

Inference Pattern	BoxE	ComplEx	DistMult
Symmetry: $r_{1}(X, Y) \Rightarrow r_{1}(Y, X)$	\checkmark	\checkmark	\checkmark
Anti-symmetry: $r_{1}(X, Y) \Rightarrow \neg r_{1}(Y, X)$	\checkmark	\checkmark	x
Inversion: $r_{1}(X, Y) \Leftrightarrow r_{2}(Y, X)$			x
${ }^{\prime}$ Comp. def.: $r_{1}(\bar{X}, \bar{Y}) \wedge r_{2}(\bar{Y}, Z) \Leftrightarrow r_{3}(\bar{X}, \bar{Z})$	x	x	\bar{x}
Gen. comp.: $r_{1}(X, Y) \wedge r_{2}(Y, Z) \Rightarrow r_{3}(X, Z)$			\underline{x}
Hierarchy: $r_{1}(\bar{X}, \bar{Y}) \Rightarrow r_{2}(\bar{X}, \bar{Y})$			
Intersection: $r_{1}(X, Y) \wedge r_{2}(X, Y) \Rightarrow r_{3}(X, Y)$	\checkmark	x	x
Mutual exclusion: $r_{1}(X, Y) \wedge r_{2}(X, Y) \Rightarrow \perp$	\checkmark	\checkmark	\checkmark

Inference Patterns

- Bilinear and Spatial Models
- Can represent hierarchy patterns (Trouillon et al., 2016; Abboud et al., 2020)
- Cannot represent any notion of composition (Sun et al., 2019; Abboud et al., 2020)

```
X mother_of Y ^ Y parent_of Z @ X grand_mother_of Z
```

Inference Pattern	BoxE	ComplEx	DistMult
Symmetry: $r_{1}(X, Y) \Rightarrow r_{1}(Y, X)$	\checkmark	\checkmark	\checkmark
Anti-symmetry: $r_{1}(X, Y) \Rightarrow \neg r_{1}(Y, X)$	\checkmark	\checkmark	x
Inversion: $r_{1}(X, Y) \Leftrightarrow r_{2}(Y, X)$			\underline{x}
${ }^{\prime}$ Comp. def.: $r_{1}(\bar{X}, \bar{Y}) \wedge r_{2}(\bar{Y}, Z) \Leftrightarrow r_{3}(\bar{X}, \bar{Z})$	x		$\bar{\chi}$
Gen. comp.: $r_{1}(X, Y) \wedge r_{2}(Y, Z) \Rightarrow r_{3}(X, Z)$			$\times 1$
Hierarchy: $r_{1}(\bar{X}, \bar{Y}) \Rightarrow r_{2}(X, \bar{Y})$			\bar{v}^{-}
Intersection: $r_{1}(X, Y) \wedge r_{2}(X, Y) \Rightarrow r_{3}(X, Y)$	\checkmark	x	x
Mutual exclusion: $r_{1}(X, Y) \wedge r_{2}(X, Y) \Rightarrow \perp$	\checkmark	\checkmark	\checkmark

Inference Patterns

- Functional Models

- Can represent a limited notion of composition (Zhang et al., 2019; Abboud et al., 2020; Lu \& Hu, 2020; Gao et al., 2020)

```
X mother_of Y ^ Y parent_of Z @ X grand_mother_of Z
```

Inference Pattern	RotatE	TransE
Symmetry: $r_{1}(X, Y) \Rightarrow r_{1}(Y, X)$	\checkmark	x
Anti-symmetry: $r_{1}(X, Y) \Rightarrow \neg r_{1}(Y, X)$	\checkmark	\checkmark
Inversion: $\underline{r}_{1}(\underline{X}, \underline{Y}) \Leftrightarrow \underline{r}_{2}(\underline{Y}, \underline{X}$ L		\checkmark
'Comp. def.: $\left.r_{1} \overline{(} \bar{X}, \bar{Y}\right) \wedge r_{2}(\bar{Y}, \bar{Z}) \Leftrightarrow r_{3}(\bar{X}, \bar{Z})$,
Gen. comp.: $r_{1}(X, Y) \wedge r_{2}(Y, Z) \Rightarrow r_{3}(X, Z)$	x	$\times 1$
Hierarchy: $r_{1}(\bar{X}, \bar{Y}) \Rightarrow r_{2}(\bar{X}, \bar{Y})$		$\bar{x}{ }^{-}$
Intersection: $r_{1}(X, Y) \wedge r_{2}(X, Y) \Rightarrow r_{3}(X, Y)$	\checkmark	\checkmark
Mutual exclusion: $r_{1}(X, Y) \wedge r_{2}(X, Y) \Rightarrow \perp$	\checkmark	\checkmark

Inference Patterns

- Functional Models
- Can represent a limited notion of composition (Zhang et al., 2019; Abboud et al., 2020; Lu \& Hu, 2020; Gao et al., 2020)

$$
\begin{aligned}
& X \text { mother_of } Y \wedge Y \text { parent_of } Z \Rightarrow X \text { grand_parent_of } Z \\
& X \text { father_of } Y \wedge Y \text { parent_of } Z \Rightarrow X \text { grand_parent_of } Z
\end{aligned}
$$

Inference Pattern	RotatE	TransE
Symmetry: $r_{1}(X, Y) \Rightarrow r_{1}(Y, X)$	\checkmark	x
Anti-symmetry: $r_{1}(X, Y) \Rightarrow \neg r_{1}(Y, X)$	\checkmark	\checkmark
Inversion: $\underline{r}_{1}(X, Y) \Leftrightarrow \underline{r}_{2}(\underline{Y}, \underline{X})$		-
'Comp. def.: $r_{1}(\bar{X}, Y) \wedge r_{2}(\bar{Y}, Z) \Leftrightarrow r_{3}(\bar{X}, \bar{Z})$		$\checkmark 1$
Gen. comp.: $\underline{r}_{1}(\underline{X}, \underline{Y}) \wedge r_{2}(Y, Z) \Longrightarrow r_{3}(\underline{X}, Z)$	x	$\times 1$
Hierarchy: $r_{1}(\bar{X}, \bar{Y}) \Rightarrow r_{2}(\bar{X}, \bar{Y})$		\bar{x}
Intersection: $r_{1}(X, Y) \wedge r_{2}(X, Y) \Rightarrow r_{3}(X, Y)$	\checkmark	\checkmark
Mutual exclusion: $r_{1}(X, Y) \wedge r_{2}(X, Y) \Rightarrow \perp$	\checkmark	\checkmark

Inference Patterns

- Functional Models
- Can represent a limited notion of composition (Zhang et al., 2019; Abboud et al., 2020; Lu \& Hu, 2020; Gao et al., 2020)

$$
\begin{aligned}
& X \text { mother_of } Y \wedge Y \text { parent_of } Z \Rightarrow X \text { grand_parent_of } Z \\
& X \text { father_of } Y \wedge Y \text { parent_of } Z \Rightarrow X \text { grand_parent_of } Z
\end{aligned}
$$

mother_of
=
father_of
(Abboud et al., 2020)

Inference Patterns

- Functional Models

- Can represent a limited notion of composition (Zhang et al., 2019; Abboud et al., 2020; Lu \& Hu, 2020; Gao et al., 2020)
- Cannot represent any notion of hierarchy (Abboud et al., 2020)

Inference Pattern	RotatE	TransE
Symmetry: $r_{1}(X, Y) \Rightarrow r_{1}(Y, X)$	\checkmark	x
Anti-symmetry: $r_{1}(X, Y) \Rightarrow \neg r_{1}(Y, X)$	\checkmark	\checkmark
Inversion: $r_{1}(X, Y) \Leftrightarrow r_{2}(Y, X)$	\checkmark	\checkmark
Comp. def.: $r_{1}(X, Y) \wedge r_{2}(Y, Z) \Leftrightarrow r_{3}(X, Z)$	\checkmark	\checkmark
Gen. comp.: $r_{1}(\underline{X}, \underline{Y}) \wedge r_{2}(\underline{Y}, Z) \Rightarrow r_{3}(\underline{X}, Z)$	x	x
'Hierarchy: $\bar{r}_{1}(\bar{X}, \bar{Y}) \Rightarrow r_{2}(\bar{X}, \bar{Y})$		-
'Intersection ${ }^{-1} \bar{r}_{1}(\bar{X}, \bar{Y})^{-} \wedge^{-} r_{2}^{-}(\bar{X}, \bar{Y}) \Longrightarrow r_{3}^{-}(\bar{X}, \bar{Y})$		\checkmark
Mutual exclusion: $r_{1}(X, Y) \wedge r_{2}(X, Y) \Rightarrow \perp$	\checkmark	\checkmark

Challenge: Inference Patterns

```
Inference Pattern
    Symmetry: }\mp@subsup{r}{1}{}(X,Y)=>\mp@subsup{r}{1}{}(Y,X
    Anti-symmetry: }\mp@subsup{r}{1}{}(X,Y)=>\neg\mp@subsup{r}{1}{}(Y,X
    Inversion: }\mp@subsup{r}{1}{}(X,Y)\Leftrightarrow\mp@subsup{r}{2}{}(Y,X
    Comp. def.: }\mp@subsup{r}{1}{}(X,Y)\wedge\mp@subsup{r}{2}{}(Y,Z)\Leftrightarrow\mp@subsup{r}{3}{}(X,Z
    Gen. comp.: }\mp@subsup{r}{1}{}(X,Y)\wedge\mp@subsup{r}{2}{}(Y,Z)=>\mp@subsup{r}{3}{}(X,Z
    Hierarchy: }\mp@subsup{r}{1}{}(X,Y)=>\mp@subsup{r}{2}{}(X,Y
    Intersection: }\mp@subsup{r}{1}{}(X,Y)\wedge\mp@subsup{r}{2}{}(X,Y)=>\mp@subsup{r}{3}{}(X,Y
    Mutual exclusion: }\mp@subsup{r}{1}{}(X,Y)\wedge\mp@subsup{r}{2}{}(X,Y)=>
```

RotatE	TransE	BoxE	ComplEx	DistMult
\checkmark	\times	\checkmark	\checkmark	\checkmark
\checkmark	\checkmark	\checkmark	\checkmark	\times
\checkmark	\checkmark	\checkmark	\checkmark	x
\checkmark	\checkmark	x	x	x
\times	\times	x	x	x
x	x	\checkmark	\checkmark	\checkmark
\checkmark	\checkmark	\checkmark	\times	x
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Challenge: Inference Patterns

- Challenge 1 :
- Contemporary KGEs cannot capture general composition

Inference Pattern	RotatE	TransE	BoxE	ComplEx	DistMult
Symmetry: $r_{1}(X, Y) \Rightarrow r_{1}(Y, X)$	\checkmark	x	\checkmark	\checkmark	\checkmark
Anti-symmetry: $r_{1}(X, Y) \Rightarrow \neg r_{1}(Y, X)$	\checkmark	\checkmark	\checkmark	\checkmark	x
Inversion: $r_{1}(X, Y) \Leftrightarrow r_{2}(Y, X)$	\checkmark	\checkmark	\checkmark	\checkmark	x
Comp. def.: $r_{1}(\underline{X}, \underline{Y}) \wedge r_{2}(\underline{Y}, \underline{Z}) \Leftrightarrow \underline{r}_{3}(\underline{X}, \underline{Z})$	-	-	\underline{x}	\underline{x}	\underline{x}
Gen. comp.: $r_{1}(X, X, Y) \wedge r_{2}(Y, Z) \Rightarrow r_{3}(\underline{X}, Z \underline{Z}$					$\underline{1}$
Hierarchy: $r_{1}(\bar{X}, \bar{Y}) \Rightarrow r_{2}(\bar{X}, \bar{Y})$		X			\checkmark
Intersection: $r_{1}(X, Y) \wedge r_{2}(X, Y) \Rightarrow r_{3}(X, Y)$	\checkmark	\checkmark	\checkmark	x	x
Mutual exclusion: $r_{1}(X, Y) \wedge r_{2}(X, Y) \Rightarrow \perp$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Challenge: Inference Patterns

- Challenge 1 :
- Contemporary KGEs cannot capture general composition
- Challenge 2:
- Capturing composition and hierarchy jointly is an open problem

Inference Pattern	RotatE	TransE	BoxE	ComplEx	DistMult
Symmetry: $r_{1}(X, Y) \Rightarrow r_{1}(Y, X)$	\checkmark	x	\checkmark	\checkmark	\checkmark
Anti-symmetry: $r_{1}(X, Y) \Rightarrow \neg r_{1}(Y, X)$	\checkmark	\checkmark	\checkmark	\checkmark	x
Inversion: $r_{1}(\underline{X}, Y) \Leftrightarrow r_{2}(Y, X)$			\checkmark		X
iComp. def.: $r_{1}(X, Y) \wedge r_{2}(\bar{Y}, \bar{Z}) \Leftrightarrow r_{3}(\bar{X}, \bar{Z})$			x	X	,
'Gen. comp.: $r_{1}(X, Y) \wedge r_{2}(Y, Z) \Rightarrow r_{3}(X, Z)$	x	x	x	x	$\times 1$
Hierarchy: $r_{1}(X, Y) \Rightarrow r_{2}(X, Y)$	x	x	\checkmark		$\checkmark 1$
					x^{-}
Mutual exclusion: $r_{1}(X, Y) \wedge r_{2}(X, Y) \Rightarrow \perp$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Challenge: Inference Patterns

- Challenge 1 :
- Contemporary KGEs cannot capture general composition
- Challenge 2:
- Capturing composition and hierarchy jointly is an open problem

Inference Pattern	ExpressivE	RotatE	TransE	BoxE	ComplEx	DistMult
Symmetry: $r_{1}(X, Y) \Rightarrow r_{1}(Y, X)$	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark
Anti-symmetry: $r_{1}(X, Y) \Rightarrow \neg r_{1}(Y, X)$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\times
Inversion: $r_{1}(X, Y) \Leftrightarrow r_{2}(Y, X)$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Comp. def.: $r_{1}(X, Y) \wedge r_{2}(Y, Z) \Leftrightarrow r_{3}(X, Z)$		\checkmark	\checkmark	\checkmark	\checkmark	\times
	\times	\times				
Gen. comp.: $r_{1}(X, Y) \wedge r_{2}(Y, Z) \Rightarrow r_{3}(X, Z)$		\checkmark	\times	\times	\times	\times
Hierarchy: $r_{1}(X, Y) \Rightarrow r_{2}(X, Y)$	\checkmark	\times	\times	\checkmark	\checkmark	\times
Intersection: $r_{1}(X, Y) \wedge r_{2}(X, Y) \Rightarrow r_{3}(X, Y)$	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark
Mutual exclusion: $r_{1}(X, Y) \wedge r_{2}(X, Y) \Rightarrow \perp$		\checkmark		\checkmark	\checkmark	\checkmark

Challenge: Expressiveness

- Spatial and Bilinear Models
- Are fully expressive (except DistMult (Yang et al., 2015a))

Challenge: Expressiveness

- Spatial and Bilinear Models
- Are fully expressive (except DistMult (Yang et al., 2015a))
- Functional Models
- Not fully expressive, i.e., cannot represent any arbitrary knowledge graph
- Struggle with one-to-many, many-to-one, and many-to-many relations

Challenge: Expressiveness

- Spatial and Bilinear Models
- Are fully expressive (except DistMult (Yang et al., 2015a))
- Functional Models
- Not fully expressive, i.e., cannot represent any arbitrary knowledge graph
- Struggle with one-to-many, many-to-one, and many-to-many relations
- Challenge 3:
- Model that is fully expressive
- Can handle one-to-many, many-to-one, and many-to-many relations
- While keeping the ability of functional models to capture composition

ExpressivE: Model Definition

ExpressivE: Model Definition

$\underset{\text { (head) }}{\substack{\text { pobin }}}$| (tail) |
| :---: |
| Ash |

Fully Expressiveness

Theorem 5.1 (Expressive Power) ExpressivE can capture any arbitrary graph G over \boldsymbol{R} and \boldsymbol{E} if the embedding dimensionality d is at least in $O(|\boldsymbol{E}| *|\boldsymbol{R}|)$.

Generalization Capabilities

Theorem 5.2 ExpressivE captures (a) symmetry, (b) anti-symmetry, (c) inversion, (d) hierarchy, (e) intersection, and (f) mutual exclusion.

Generalization Capabilities

Theorem 5.2 ExpressivE captures (a)|symetry, (b) anti-symmetry, (c) inversion, (d) hierarchy, (e) intersection, and (f) mutual exclusion.

Generalization Capabilities

Theorem 5.2 ExpressivE captures (a) symmetry, (b) anti-symetry,' (c) inversion, (d) hierarchy, (e) intersection, and (f) mutual exclusion.

Generalization Capabilities

Theorem 5.2 ExpressivE captures (a) symmetry, (b) anti-symmetry, (c) inversion, (d) hierarchy, (e) intersection, and (f) mutual exclusion.

Generalization Capabilities

Theorem 5.2 ExpressivE captures (a) symmetry, (b) anti-symmetry, (c) inverrion, (d) hierarchy, (e) intersection, and (f) mutual exclusion.

Generalization Capabilities

Theorem 5.2 ExpressivE captures (a) symmetry, (b) anti-symmetry, (c) inversion, (d) hīerārchy, (e) intersection, and (f) mutual exclusion.

Generalization Capabilities

Theorem 5.2 ExpressivE captures (a) symmetry, (b) anti-symmetry, (c) inversion, (d) hierarchy, (e) intersection, and (f) mutual exclūsion.

Generalization Capabilities

Theorem 5.2 ExpressivE captures (a) symmetry, (b) anti-symmetry, (c) inversion, (d) hierarchy, (e) ,intersection, and (f) mutual exclusion.

Composition

Theorem 5.4 ExpressivE captures compositional definition and general composition.

Composition

Theorem 5.4 ExpressivE captures'compositional definitiond and general composition.

```
X mother_of Y ^ Y parent_of Z }\Leftrightarrow\textrm{X}\mathrm{ grand_mother_of Z
```


Composition

Theorem 5.4 ExpressivE captures'compositional definitiond and general composition.

```
X mother_of Y ^ Y parent_of Z }\Leftrightarrow\textrm{X}\mathrm{ grand_mother_of Z
```


Theorem 5.3

Composition

Theorem 5.4 ExpressivE captures'compositional definitiond and general composition.

```
X mother_of Y ^ Y parent_of Z }\Leftrightarrow\textrm{X}\mathrm{ grand_mother_of Z
```


Theorem 5.3

Composition

Theorem 5.4 ExpressivE captures'compositional definition and general composition.

```
X mother_of Y ^ Y parent_of Z \Leftrightarrow X grand_mother_of Z
    X father_of Y ^ Y parent_of Z & X grand_father_of Z
```


Composition

Theorem 5.4 ExpressivE captures'compositional definition and general composition.

```
X mother_of Y ^ Y parent_of Z & X grand_mother_of Z
    X father_of Y ^ Y parent_of Z & X grand_father_of Z
```


Composition

Theorem 5.4 ExpressivE captures compositional definition and general composition.

```
X mother_of Y ^ Y parent_of Z = X grand_parent_of Z
X father_of Y ^ Y parent_of Z = X grand_parent_of Z
```


Composition

Theorem 5.4 ExpressivE captures compositional definition and general composition.

```
X mother_of Y ^ Y parent_of Z }=>\textrm{X}\mathrm{ grand__parent_of Z
X father_of Y ^ Y parent_of Z => X grand_parent_of Z
```


Composition

Theorem 5.4 ExpressivE captures compositional definition and general composition.

```
X mother_of Y ^ Y parent_of Z }=>\textrm{X}\mathrm{ grand__parent_of Z
X father_of Y ^ Y parent_of Z => X grand_parent_of Z
```


Representing relations as regions naturally allows for one-to-many, many-to-one, and many-to-many relations

Evaluation on KGC

Family	Model	WN18RR				FB15k-237			
.		H@1	H@3	H@10	MRR	H@1	H@3	H@10	MRR
$\stackrel{\square}{0}$	Base ExpressivE	. 464	. 522	. 597	. 508	. 243	. 366	. 512	. 333
\%	Func. ExpressivE	. 407	. 519	. 619	. 482	. 256	. 387	. 535	. 350
*	BoxE	. 400	. 472	. 541	. 451	. 238	. 374	. 538	. 337
\dot{J}	RotatE	. 428	. 492	. 571	. 476	. 241	. 375	. 533	. 338
绽	TransE	. 013	. 401	. 529	. 223	. 233	. 372	. 531	. 332
	DistMult	-	-	. 531	. 452	-	-	. 531	. 343
.	ComplEx	-	-	. 547	. 475	-	-	. 536	. 348
柈	TuckER	. 443	. 482	. 526	. 470	. 266	. 394	. 544	. 358

Evaluation on KGC

Family	Model	WN18RR				FB15k-237				
.		H@1	H@3	H@10	MRR	H@1	H@3	H@10	MRR	
\%	Base ExpressivE	. 464	. 522	. 597	. 508 \\|	. 243	. 366	. 512	. 333	
Q	Func. ExpressivE	. 407	. 519	. 619	. 482	. 256	. 387	. 535	. 350	
\otimes	BoxE	. 400	. 472	. 541	. 451	. 238	. 374	. 538	. 337	
-	RotatE	. 428	. 492	. 571	. 476	. 241	. 375	. 533	. 338	
园	TransE	. 013	. 401	. 529	. 223	. 233	. 372	. 531	. 332	
光	DistMult	-	-	. 531	. 452	-	-	. 531	. 345	
.	ComplEx	-	-	. 547	. 475	-	-	. 536	. 348	
¢	TuckER	. 443	. 482	. 526	. 470	. 266	. 394	. 544	. 358	

Evaluation on KGC

Family 	Model	WN18RR				FB15k-237				
		H@1	H@3	H@10	MRR	, H@1	H@3	H@10	MRR	
	Base ExpressivE	\\| . 464	. 522	. 597	. 508	. 243	. 366	. 512	. 333	
	Func. ExpressivE	\| . 407	. 519	. 619	. 482	. 256	. 387	. 535	. 350	
\%	BoxE	1. 400	. 472	. 541	. 451	. 238	. 374	. 538	. 337	
-	RotatE	. 428	. 492	. 571	. 476	\\| . 241	. 375	. 533	. 338	
妵	TransE	. 013	. 401	. 529	. 223	\\| . 233	. 372	. 531	. 332	
ซี	DistMult	1 -	-	. 531	. 452	-	-	. 531	. 343	
.	ComplEx		-	. 547	. 475	1	-	. 536	. 348	
$\stackrel{\square}{\square}$	TuckER	. 443	. 482	. 526	. 470	\| . 266	. 394	. 544	. 358	

Evaluation on KGC

Family	Model	WN18RR				FB15k－237			
．		H＠1	H＠3	H＠10	MRR	H＠1	H＠3	H＠10	MRR
حّ	Base ExpressivE	． 464	． 522	． 597	． 508	． 243	． 366	． 512	． 333
a	Func．ExpressivE	． 407	． 519	． 619	． 482	． 256	． 387	． 535	． 350
\％	BoxE	． 400	． 472	． 541	． 451	． 238	． 374	． 538	． 337
$\dot{\square}$	RotatE	． 428	． 492	． 571	． 476	． 241	． 375	． 533	． 338
圭	TransE	． 013	． 401	． 529	． 223	． 233	． 372	． 531	． 332
	DistMult	－	－	． 531	． 452	－	－	． 531	． 343
河	ComplEx	－	－	． 547	． 475	－	－	． 536	． 348
䛖	TuckER	． 443	． 482	． 526	． 470	． 266	． 394	． 544	． 358

	Benchmark	Dimensionality	ExpressivE	BoxE	RotatE
	WN18RR	500	467MB	930MB	930MB
	FB15k－237	1000	366MB	687 MB	687MB
TransE and RotatE：（Sun et al．，201s TuckER：（Balazevic et al．，2019） DistMult and ComplEx：（Ruffinelli et	Yang et al．，2015b）		\simeq		

Evaluation on KGC

Family 	Model	WN18RR				FB15k-237			
		H@1	H@3	H@10	MRR	H@1	H@3	H@10	MRR
	Base ExpressivE	. 464	. 522	. 597	. 508	. 243	. 366	. 512	. 333
	${ }^{\text {Func. ExpressivE }}$. 407	. 519	. 619	. 482	. 256	. 387	. 535	. 350
\pm	1 BoxE	. 400	. 472	. 541	. 451	. 238	. 374	. 538	. 337
U	1 RotatE	. 428	. 492	. 571	. 476	. 241	. 375	. 533	. 338
陑	TransE	. 013	. 401	. 529	. 223	. 233	. 372	. 531	. 332
๔	DistMult	-	-	. 531	. 452	-	-	. 531	. 343
.	ComplEx	-	-	. 547	. 475	-	-	. 536	. 348
㕶	TuckER	. 443	. 482	. 526	. 470	. 266	. 394	. 544	. 358

	Benchmark	Dimensionality	ExpressivE	BoxE	RotatE
	WN18RR	500	467MB	930MB	930MB
	FB15k-237	1000	366MB	687 MB	687MB
TransE and RotatE: (Sun et al., 201 TuckER: (Balazevic et al., 2019)		$---$	-	- -	- -

Additional Results

Relation Name	ExpressivE	RotatE	BoxE
member_meronym	$\mathbf{0 . 2 3 3}$	0.199	$\underline{0.226}$
hypernym	$\mathbf{0 . 1 8 9}$	$\underline{0.162}$	0.159
has_part	$\mathbf{0 . 1 9 8}$	$\underline{0.187}$	0.168
instance_hypernym	$\underline{0.352}$	0.326	$\mathbf{0 . 4 2 5}$
synset_domain_topic_of	$\underline{0.363}$	$\mathbf{0 . 3 8 4}$	0.323
member_of_domain_usage	0.288	$\underline{0.333}$	$\mathbf{0 . 3 6 0}$
member_of_domain_region	0.123	$\underline{0.188}$	$\mathbf{0 . 1 8 9}$
also_see	$\mathbf{0 . 6 4 9}$	$\underline{0.631}$	0.517
derivationally_related_from	$\mathbf{0 . 9 5 6}$	$\underline{0.943}$	0.902
similar_to	$\mathbf{1 . 0 0 0}$	$\mathbf{1 . 0 0 0}$	$\mathbf{1 . 0 0 0}$
verb_group	$\mathbf{0 . 9 7 2}$	0.843	$\underline{0.876}$

Task	Predicting Head				Predicting Tail			
Cardinality	1-1	1-N	N-1	$\mathrm{N}-\mathrm{N}$	1-1	1-N	N-1	$\mathrm{N}-\mathrm{N}$
ExpressivE	0.976	0.290	$\underline{0.105}$	0.941	0.976	0.141	0.327	0.938
RotatE	0.833	0.294	0.103	$\underline{0.930}$	0.875	0.107	$\underline{0.288}$	$\underline{0.925}$
BoxE	0.877	0.272	0.146	0.883	$\underline{0.893}$	0.147	0.246	0.884
Head Rel.		_verb_g	group			also_see		_syn_dto
Model	S_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	S_{7}	C_{8}
Base Exp.	1.000	1.000	1.000	1.000	0.818	0.907	0.985	0.621
RotatE	0.865	0.760	0.760	0.760	0.771	0.893	0.975	0.599
BoxE	0.906	0.801	0.806	0.806	0.632	0.645	0.727	0.547

Summary

Summary

- ExpressivE: A spatio-functional KGE that

Summary

- ExpressivE: A spatio-functional KGE that
- is fully expressive (first among functional KGEs)

Summary

- ExpressivE: A spatio-functional KGE that
- is fully expressive (first among functional KGEs)
- captures composition and hierarchy jointly

Summary

- ExpressivE: A spatio-functional KGE that
- is fully expressive (first among functional KGEs)
- captures composition and hierarchy jointly
- captures general composition

Summary

- ExpressivE: A spatio-functional KGE that
- is fully expressive (first among functional KGEs)
- captures composition and hierarchy jointly
- captures general composition
- Additionally, ExpressivE

Summary

- ExpressivE: A spatio-functional KGE that
- is fully expressive (first among functional KGEs)
- captures composition and hierarchy jointly
- captures general composition
- Additionally, ExpressivE
- allows for an intuitive geometric interpretation

Summary

- ExpressivE: A spatio-functional KGE that
- is fully expressive (first among functional KGEs)
- captures composition and hierarchy jointly
- captures general composition
- Additionally, ExpressivE
- allows for an intuitive geometric interpretation
- can handle one-to-many, many-to-one, and many-to-many relations

Summary

- ExpressivE: A spatio-functional KGE that
- is fully expressive (first among functional KGEs)
- captures composition and hierarchy jointly
- captures general composition
- Additionally, ExpressivE
- allows for an intuitive geometric interpretation
- can handle one-to-many, many-to-one, and many-to-many relations
- achieves very strong performance on KGC, while solely using half the number of parameters of its closest relatives

Thank you

