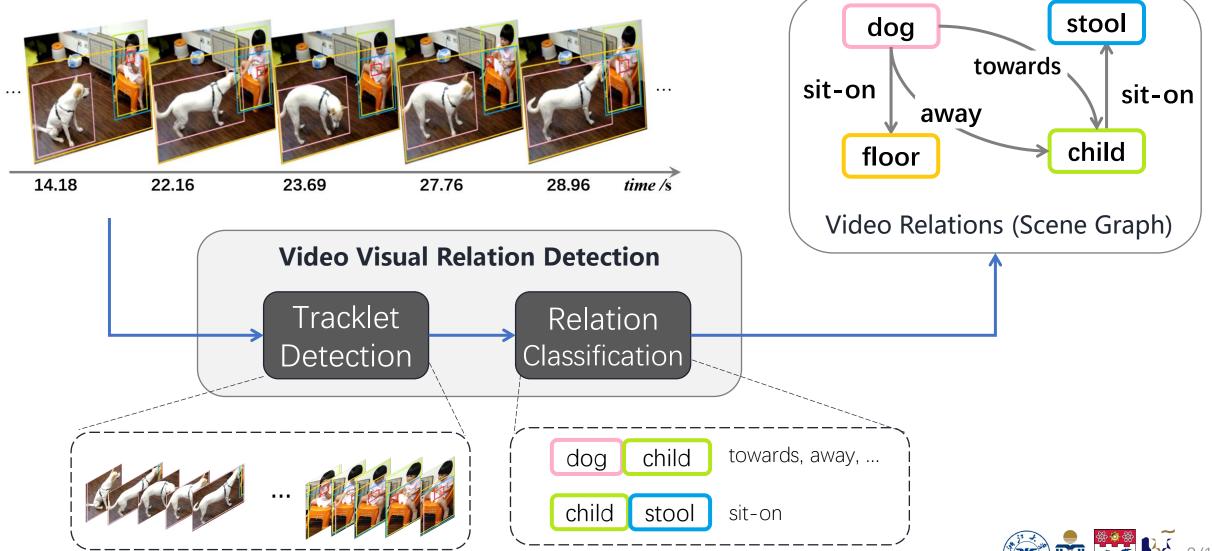


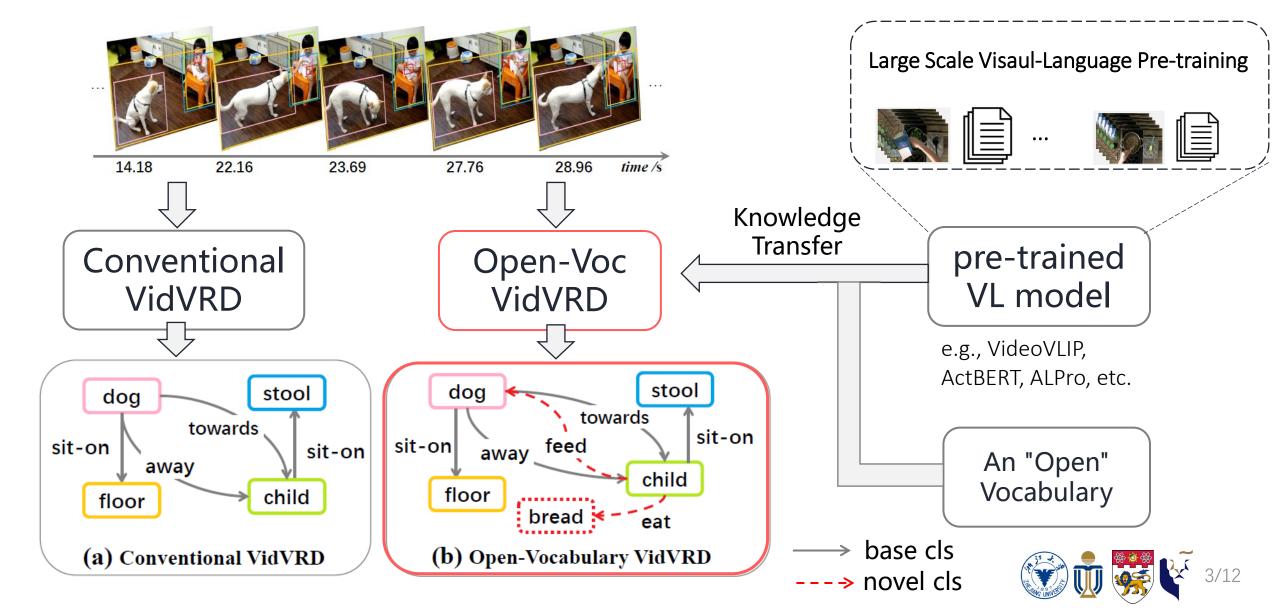

Compositional Prompt Tuning with Motion Cues for Open-Vocabulary Video Relation Detection

Kaifeng Gao¹ · Long Chen² · Hanwang Zhang³ · Jun Xiao¹ · Qianru Sun⁴

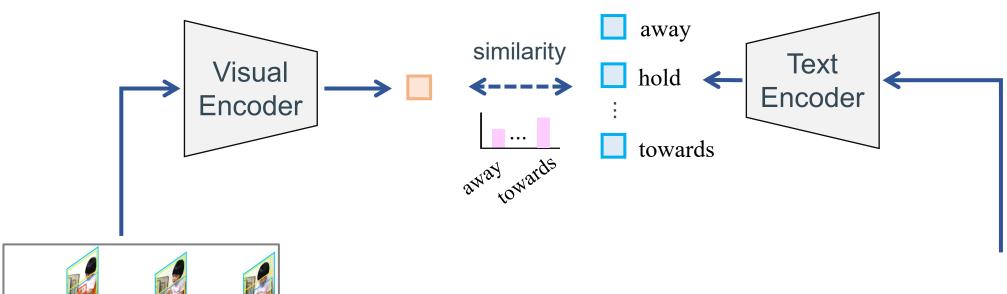
¹Zhejiang University, ²The Hong Kong University of Science and Technology, ³Nanyang Technological University, ⁴Singapore Management University



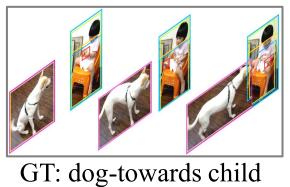
Introduction to Video Visual Relation Detection



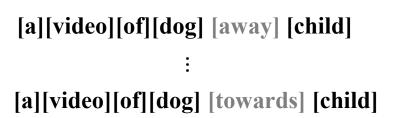
Towards Open-vocabulary Video VRD



Prompt for Pre-trained VLM


GT: dog-towards child

[a][video][of][dog] [away] [child]
:
[a][video][of][dog] [towards] [child]


Prompt for Pre-trained VLM

(a) Fixed (Handcraft)
Prompts

[...] fixed prompt token

[...] learnable prompt token

(b) ConventionalLearnable Prompts

$$[w_1] [w_2] ... [w_L] [away]$$
:
 $[w_1] [w_2] ... [w_L] [towards]$

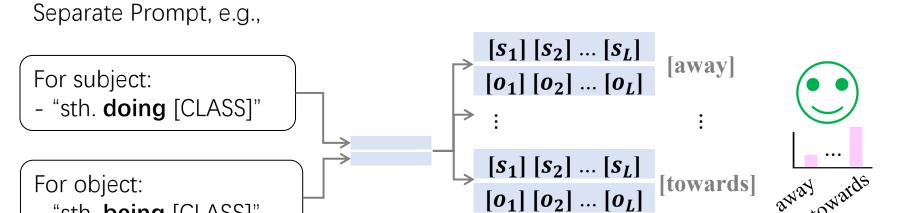
Drawbacks:

- 1) Overfit to base categories in open-vocabulary setting
- 2) Not consider the spatial-temporal motion information of trajectory pair.

Compositional & Motion -based Prompt

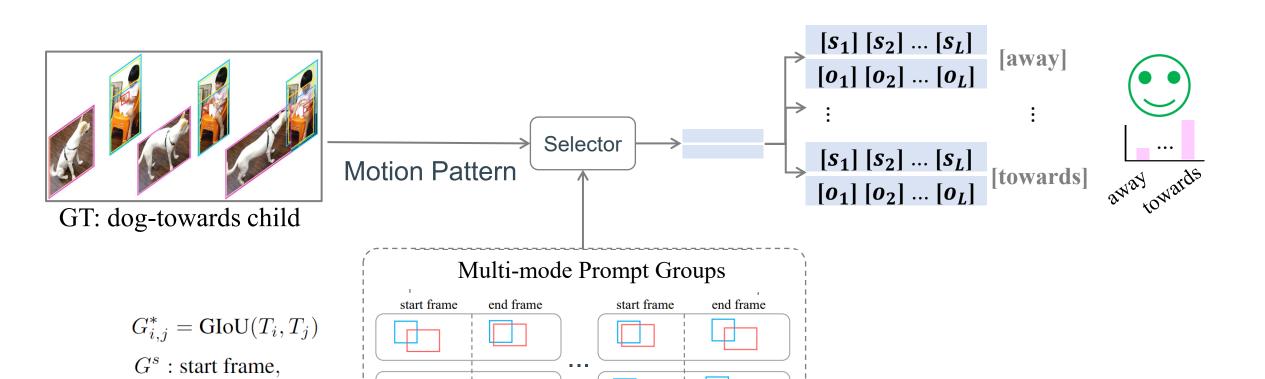
For object:

- "sth. being [CLASS]"



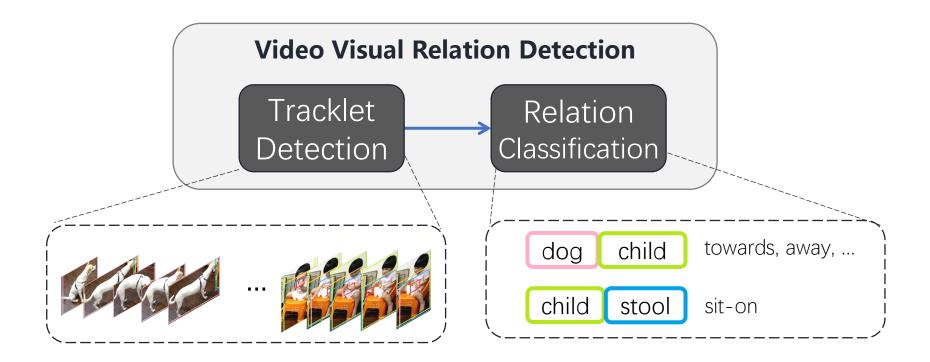
Ours

GT: dog-towards child

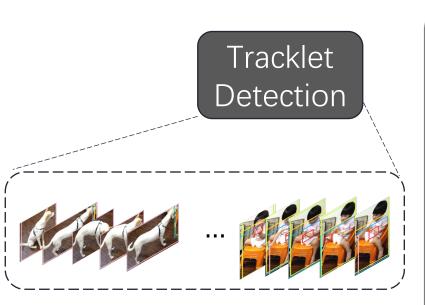

Compositional & Motion –based Prompt

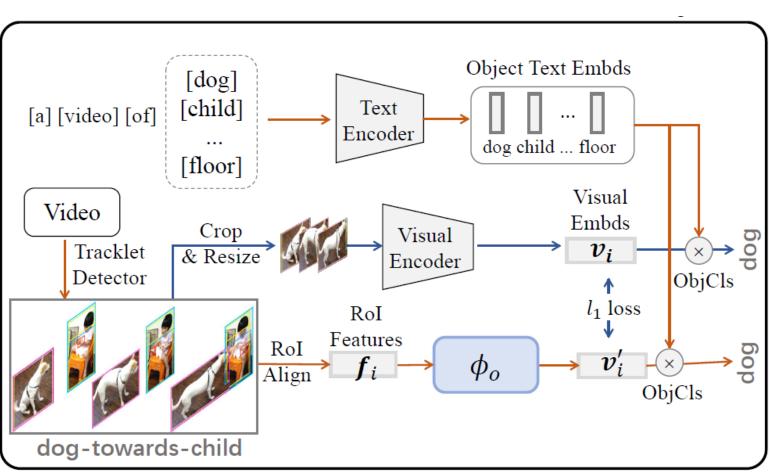
Ours

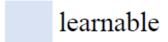
 G^e : end frame

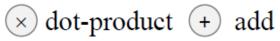


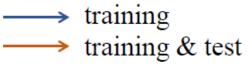
Knowledge Transfer from Pre-trained VLM

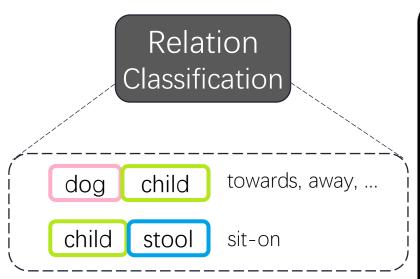

A popular two-stage pipeline:

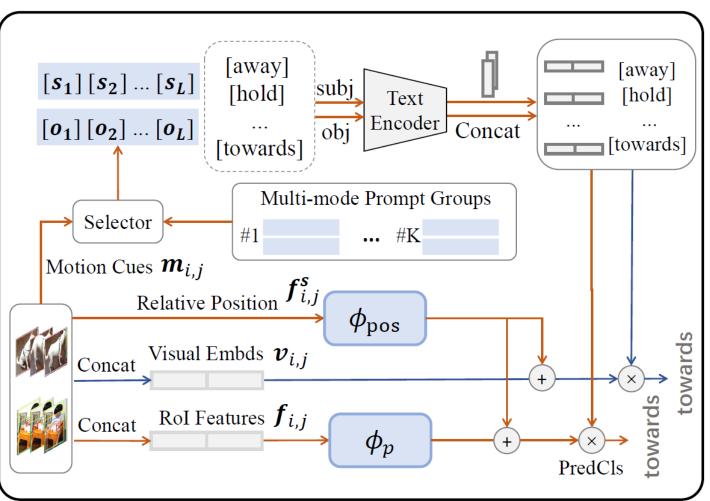



Knowledge Transfer from Pre-trained VLM









Knowledge Transfer from Pre-trained VLM

learnable

fixed

× dot-product (+) add

training training & test

Experiments Results

Compare with SOTA in conventional setting

Methods	Training Data		SGDet		RelTag			
Methods	Training Data	mAP	R@50	R@100	P@1	P@5	P@10	
Su et al. (2020)	base+novel	19.03	9.53	10.38	57.50	41.40	29.45	
Liu et al. (2020)	base+novel	18.38	11.21	13.69	60.00	43.10	32.24	
Li et al. (2021)	base+novel	22.97	12.40	14.46	68.83	49.87	35.57	
Gao et al. (2022)	base+novel	17.67	9.63	11.29	56.00	43.80	32.85	
RePro (Ours)	base	21.33	12.92	15.94	59.00	41.09	28.87	
RePro (Ours)	base+novel	25.55	13.83	17.33	62.50	45.80	32.05	

Experiments Results

Comparison in the Open-Vocabulary setting

Split	Methods	SGDet			SGCls			PredCls		
		mAP	R@50	R@100	mAP	R@50	R@100	mAP	R@50	R@100
Novel	ALPro	1.05	3.14	4.62	3.69	7.27	8.92	4.09	9.42	10.41
	VidVRD-II	3.57	8.59	12.39	5.70	13.22	18.34	7.35	18.84	26.44
	RePro [†]	2.56	8.26	11.73	8.63	15.04	18.84	9.34	18.67	24.13
	RePro	6.10	13.38	16.52	10.32	19.17	25.28	12.74	25.12	33.88
7	★ ALPro	3.20	2.62	3.18	3.92	3.88	4.75	4.97	4.50	5.79
All	VidVRD-II	12.74	9.90	12.59	17.26	14.93	19.68	19.73	18.17	24.90
	RePro [†]	16.21	11.14	14.56	22.37	16.83	21.71	25.43	21.36	28.04
	RePro	21.33	12.92	15.94	30.15	19.75	25.00	34.90	25.50	32.49

★ Pre-trained VLM zero-shot inference

- Li, Dongxu, et al. "Align and prompt: Video-and-language pre-training with entity prompts." In CVPR 2022.

◆ Baseline VidVRD model

- Shang, Xindi, et al. "Video visual relation detection via iterative inference." ACM Multimedia. 2021.

Experiments Results

> Ablation Studies for Comp. & Motion Prompting

			M	SGDet			SGCls			PredCls		
		C	M	mAP	R@50	R@100	mAP	R@50	R@100	mAP	R@50	R@100
Novel-split	#1	×	×	3.50	9.91	13.88	7.21	14.54	19.83	8.63	20.33	27.43
	#2	\checkmark	×	5.57	11.40	14.87	10.31	16.52	21.81	11.83	22.31	30.90
	#3	\checkmark	Ens	6.24	11.57	15.20	10.77	16.03	21.98	12.36	21.32	29.91
	#4	\checkmark	Rand	7.14	11.90	14.87	10.85	16.52	23.30	12.42	22.64	30.90
	#5	\checkmark	\checkmark	6.10	13.38	16.52	10.32	19.17	25.28	12.74	25.12	33.88
All-splits	#1	×	×	19.73	12.26	15.36	26.80	18.24	23.06	30.80	23.70	30.42
	#2	\checkmark	×	18.47	11.95	15.28	25.52	18.13	23.12	29.45	23.39	30.17
	#3	\checkmark	Ens	20.15	12.38	15.61	27.93	18.61	23.55	31.68	23.61	30.29
	#4	\checkmark	Rand	21.72	12.71	15.78	29.15	19.15	24.13	33.11	24.38	31.49
	#5	\checkmark	\checkmark	21.33	12.92	15.94	30.15	19.75	25.00	34.90	25.50	32.49

C: Compositional; **M**: Motion cues;

Ens: ensemble all the learned prompts by averaging their representations.

Rand: randomly select a prompt without considering motion cues

Compositional Prompt Tuning with Motion Cues for Open-Vocabulary Video Relation Detection

Kaifeng Gao¹ · Long Chen² · Hanwang Zhang³ · Jun Xiao¹ · Qianru Sun⁴

¹Zhejiang University, ²The Hong Kong University of Science and Technology, ³Nanyang Technological University, ⁴Singapore Management University

For more information, refer to

Open Review

&

GitHub

