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DIGRESS: DIFFUSION ON A DISCRETE SPACE

• Motivation for discrete diffusion: no need to predict continuous values 
that do not exist in the data + do not break sparsity 

• Adding noise =  sampling node or edge types from a categorical 
distribution 

• No edge = one particular edge type
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03 DIGRESS: METHOD (TRAINING)

Graph generation = sequence of node and edge classification tasks

Use a graph transformer network
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03 DIGRESS: METHOD (SAMPLING)
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02 DIGRESS: IMPROVEMENTS
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Uniform

Marginal

•Better noise model 
 
 

•Additional features for improving the graph Transformer expressivity 
 

•Regression guidance for conditioning on graph-level properties
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RESULTS
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•  We achieve state-of-the-art performance on Planar graphs, 
SBM graphs, QM9, MOSES, GuacaMol across graph 
based method that operate at the node level.  
  

•  On small graphs, Gaussian and discrete diffusion models 
achieve similar performance, but DiGress is much faster to train 
(1 hour vs 7 hour on QM9) 

•  On larger graphs, DiGress clearly outperform our Gaussian 
based diffusion model 

•First non autoregressive model to scale to the Guacamol 
dataset



Summary
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•DiGress solves graph generation as a sequence of 
node and edge classification task 

•Diffusion models for graphs significantly 
outperform previous methods — opens the way to 
many applications 

•Discrete diffusion helps scaling to large graphs 

•  Limitation:  complexityO(n2)


