Finding the Global Semantic Representation in GAN through Fréchet Mean

Jaewoong Choi, Geonho Hwang, Hyunsoo Cho, Myungjoo Kang

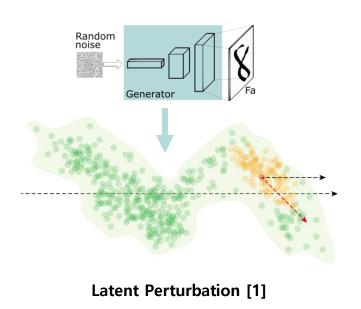
ICLR 2023

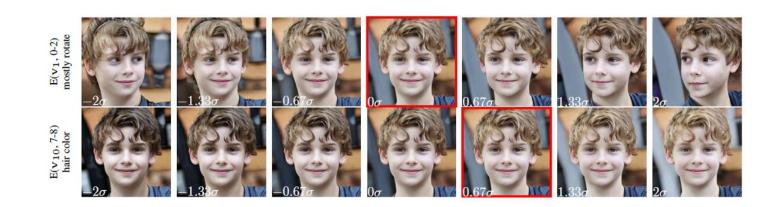
Preliminaries Disentangled Latent Perturbation

- Consider a GAN-generator $G: \mathcal{Z} \rightarrow \mathcal{X}$ and an image transformation T.
- The disentangled latent perturbation, i.e., <u>Semantic Basis</u>, $v_t(z)$ on Z for T is defined as follows:

 $G(z + v_t(z)) = T(x)$ where x = G(z).

• $v_t(z)$ is global if $v_t(z) = v_t$ for all $z \in \mathbb{Z}$, and is local otherwise.





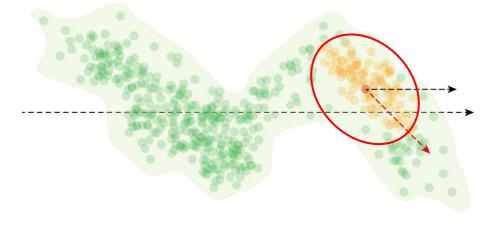
Disentangled Semantic Variation [2]. Red box denotes the original image.

[1] Choi, Jaewoong, et al. "Do not escape from the manifold: Discovering the local coordinates on the latent space of GANs." *ICLR*, 2022. [2] Härkönen, Erik, et al. "Ganspace: Discovering interpretable gan controls." *NeurIPS*, 2020.

Preliminaries Understanding Semantics via Latent Manifold

• Divide a pretrained GAN into two subnetworks based on the intermediate latent space \widetilde{W}

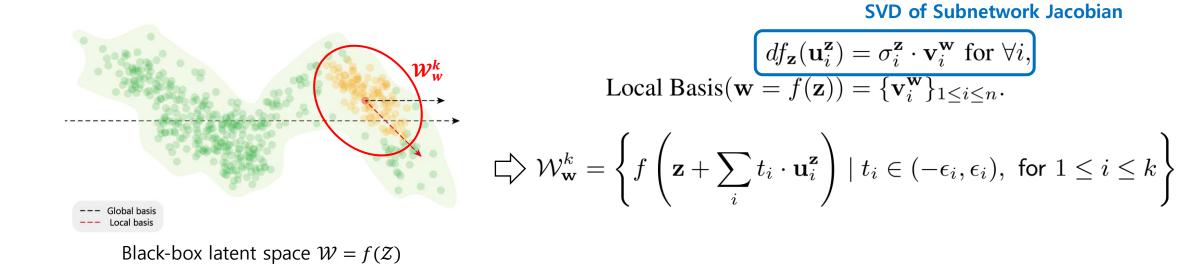
• [1] suggested Local Semantic Basis by estimating $\mathcal{W} = f(\mathcal{Z})$ with the lower-dimensional local approximation motivated by manifold hypothesis.



Black-box latent space $\mathcal{W} = f(\mathcal{Z})$ [1]

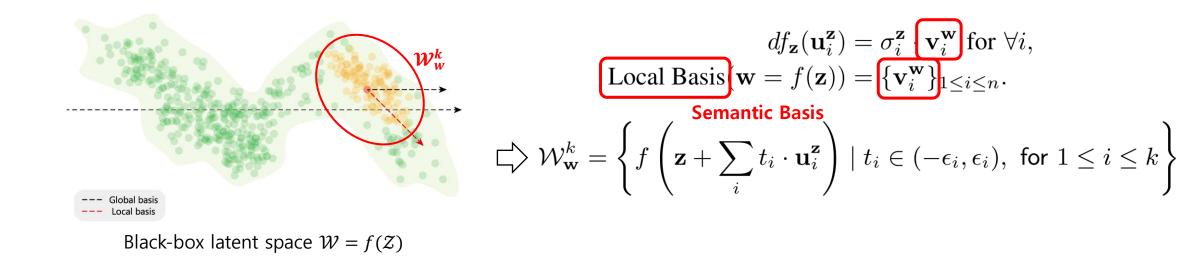
Preliminaries Finding Local (Semantic) Basis

• Discover the local approximation through the **Singular Value Decomposition** of df_z .



Preliminaries Finding Local (Semantic) Basis

• Discover the local approximation through the Singular Value Decomposition of df_z .



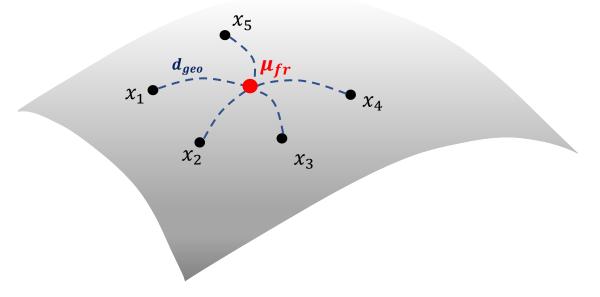
• The top-k Local Basis spans the tangent space of k-dim approximating manifold:

$$T_{\mathbf{w}}\mathcal{W}^k_{\mathbf{w}} = \operatorname{span}\{\mathbf{v}^{\mathbf{w}}_i : 1 \le i \le k\}$$

Fréchet Basis Finding Global (Semantic) Basis

- Discover the Global Semantic Basis by averaging the Local Semantic Basis
 - Fréchet Mean μ_{fr} on the metric space X

• For
$$x_1, x_2, ..., x_n \in X$$
, $\mu_{fr} = \operatorname*{arg\,min}_{\mu \in X} \sum_{1 \le i \le n} d(\mu, x_i)^2$.



Fréchet Mean μ_{fr} on Riemannian Manifold

Fréchet Basis Finding Global Semantic Subspace

- Discover Global Semantic Subspace S_S by Fréchet Mean on Grassmannian manifold $Gr(d_W, \mathbb{R}^{d_W})$
 - I. Sample the intrinsic tangent space $T_{w_i} \mathcal{W}_{w_i}^{d_{w_i}}$ at each $w_i \in \mathcal{W}$
 - II. Embed each tangent space to $Gr(d_{\mathcal{W}}, \mathbb{R}^{d_{\mathcal{W}}})$ by matching its dimension to $d_{\mathcal{W}}$
 - III. Solve the following optimization problem:

Fréchet Basis Finding Fréchet Basis

- Choose the optimal Global Semantic Basis of S_s by Fréchet Mean on Special Orthogonal Group
- Why Special Orthogonal Group $SO(d_W)$?
 - Let the columns of $M_S, M'_S \in \mathbb{R}^{d_{\widetilde{W}} \times d_{\widetilde{W}}}$ be the **two distinct orthonormal basis** of the Semantic Subspace S_S
 - Then, there exists an orthogonal matrix O s.t. $M'_S = M_S O$.
 - \rightarrow Finding the optimal basis of S_S is equivalent to finding the orthogonal matrix O.
 - Orthogonal Group is disconnected.
 - Our task is independent of the flipping ((-1)-multiplication) of each basis component.
 - → From $O(d_W)$ to $SO(d_W)$

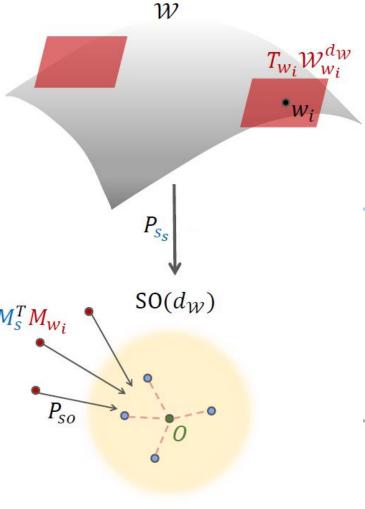
Fréchet Basis Finding Fréchet Basis

- The proposed scheme for Basis Refinement is as follows:
 - I. Project each local semantic basis to the S_S
 - II. Project these projected local semantic basis to $SO(d_W)$

$$P_{so}(X) = U \operatorname{diag}(1, 1, \dots, 1, \det(P_o(X))) V^{\top}$$

where
$$P_o(X) = UV^{\top}$$
.
III. Find the Fréchet mean O in $SO(d_W)$ and
Embed back to the ambient space.
 $\mathcal{B}_s = M_S O$ where $O = \underset{\mu \in SO(d_W)}{\operatorname{arg\,min}} \sum_{1 < i < n} d\left(\mu, P_{so}\left(M_S^{\top} M_{\mathbf{w}_i}\right)\right)^2$.

Fréchet Basis



Experiments Quantitative Comparison of Semantic Factorization.

- Compare DCI scores (1) of Fréchet Basis and GANSpace representations of the same latent space
 - DCI is a supervised disentanglement metric that assesses the axis-wise alignment of semantics.
- In most latent spaces, the latent space achieves a higher DCI score in the Fréchet Basis representation.

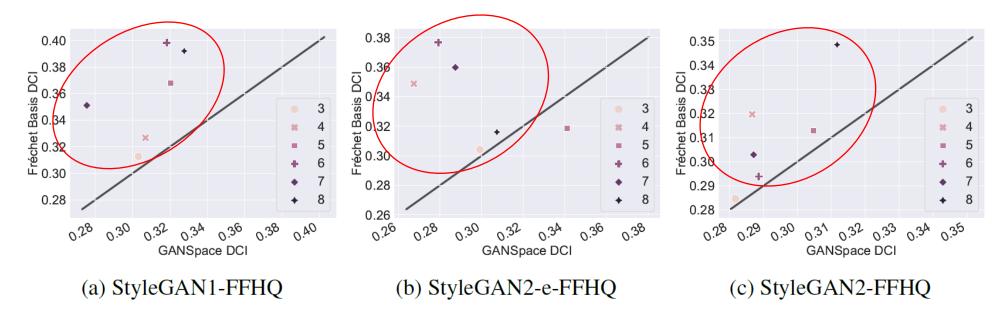


Figure 4: Quantitative Comparison of Semantic Factorization. DCI score (\uparrow) is a supervised disentanglement metric that evaluates the axis-wise alignment of semantics. Fréchet basis outperforms GANSpace when a point is located *above* the black line. (The black line illustrates y = x.)

Experiments Quantitative Comparison of Image Fidelity

- Compare FID scores (1) of Fréchet Basis and GANSpace under the latent perturbation
 - A large FID score indicates that the distribution of the traversed image is far from that of the natural training images, which implies the image collapse.

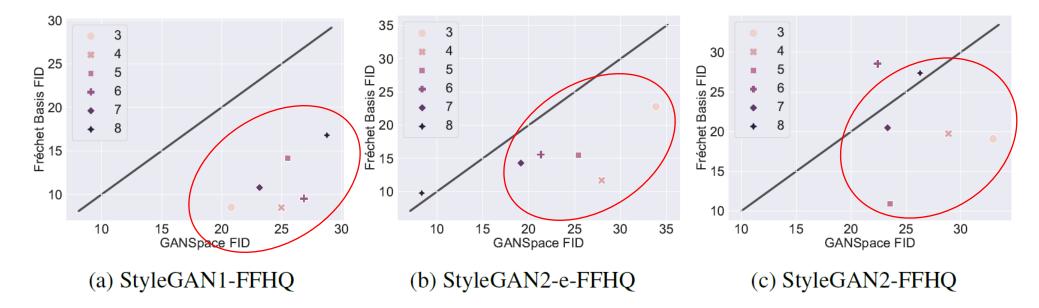
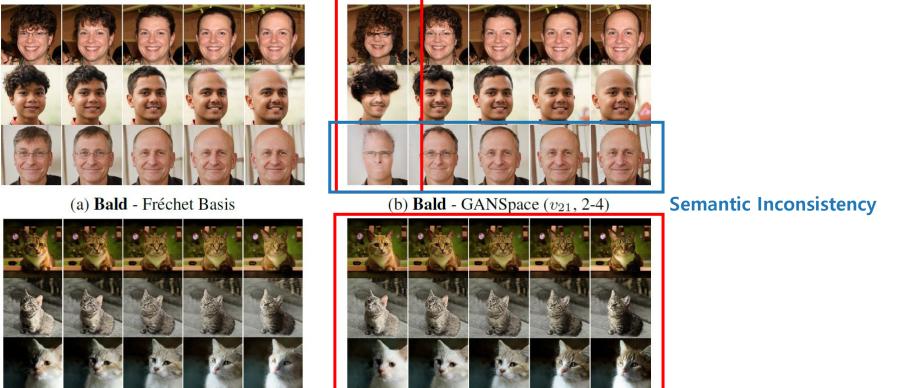


Figure 5: Quantitative Comparison of Robustness. The image fidelity under the latent traversal is evaluated by FID (\downarrow). Fréchet basis performs better when a point is placed *below* the black line.

Experiments **Fréchet Basis as Global Semantic Perturbation**

Compare Fréchet Basis with GANSpace of the highest cosine similarity. ٠



(c) Light Position - Fréchet Basis **Ours (Fréchet Basis)**

(d) Light Position - GANSpace $(v_{28}, 8)$

GANSpace

Entanglement

