Q-Pensieve: Boosting Sample Efficiency of Multi-Objective RL Through Memory Sharing of Q-Snapshots

<u>Wei Hung</u>^{12*}, Bo-Kai Huang^{1*}, Ping-Chun Hsieh¹, Xi Liu³ ICLR 2023

1. Department of Computer Science, National Yang Ming Chiao Tung University 2.Research Center for Information Technology Innovation, Academia Sinica 3.Applied Machine Learning, Meta AI

Introduction

- We identify the critical sample inefficiency issue in the existing MORL algorithms for continuous control
- We propose Q-Pensieve, which is a policy improvement scheme for enhancing the data sharing capability across policies
- We substantiate the concept of Q-Pensieve policy iteration by proposing the technique of Q replay buffer and arrive at a practical actor-critic type practical implementation

Multi-Objective Applications in Real World

Communication networks

• Throughput and latency

Robotics

• Speed, survival bonus and control cost

Chip Design

• Wirelength, routing congestion, and density

(Credit by Mirhoseini et al.)

MORL Learns Diverse Behaviors

A=[0.1,0.9] Balance with minimal contro cost

λ=[0.5,0.5] Walk gracefully

λ=[0.9,0.1] Sprint at all cost!!

4

MORL Formulation

 $\begin{aligned} Q_{\pi_{\theta}}(s,a) &:= \mathbf{E}[\Sigma_{t=0}^{\infty} \gamma^{t} \mathbf{r}_{t} | s_{0} = s, a_{0} = a; \pi_{\theta}] & \text{(Q-functions in MORL)} \\ J(\pi_{\theta}) &:= \mathbf{E}_{s_{0},a_{0} \sim \pi_{\theta}}[Q_{\pi_{\theta}}(s_{0},a_{0})] & \text{(Vector-Valued Total Return)} \\ \text{Goal: Given all } \mathbf{\lambda}, \text{ learn } \mathcal{T}_{\boldsymbol{\theta}} \text{ that maximizes utility } \lambda^{\mathsf{T}} J(\pi_{\theta}) \end{aligned}$

Convex Coverage Set (CCS)

: Non-CCS

It is a total return vector of some $\boldsymbol{\pi}$

$$J(\pi) = \Sigma_t \gamma^t \mathbf{r}(s, a)$$

:CCS

It is an optimal return vector for some $\boldsymbol{\lambda}$

$$\lambda^{\mathsf{T}}J(\pi^*) \geq \lambda^{\mathsf{T}}J(\pi), \forall \pi$$

Different Aspects:

- Maximize hypervolume (Area covered by reward vector)
- Maximize $\lambda^{\mathsf{T}} J(\pi), \forall \lambda$

Existing Solutions to MORL

- Explicit search PGMORL
 - Evolutionary search for CCS
 - Issue: Sample inefficiency!

1. Jie Xu, Yunsheng Tian, Pingchuan Ma, Daniela Rus, Shinjiro Sueda, and Wojciech Matusik. Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control, ICML 2020

Existing Solutions to MORL

- Implicit search Conditioned Networks (CN)
 - Preference-dependent MO-DQN

1.

• Issue: No policy improvement guarantee!

Envelope Q-Learning

- Align one preference with optimal rewards that may have been explored under other preferences
- Bellman backup operator

$$\mathcal{T}_{\pi}Q(s,a;\lambda) = \mathbf{r}(s,a) + \gamma \mathbf{E}_{(s',a')\sim(\mathcal{P},\pi)}Q(s',a';\lambda)$$

- Optimality filter for multi-objective Q

$$(\mathcal{H}Q)(s;\lambda) = \arg_Q \sup_{a \in \mathcal{A}, \lambda' \in \Lambda} \lambda^{\mathsf{T}}Q(s,a;\lambda')$$

1. Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective reinforcement learning and policy adaptation, NeurIPS 2019

Our Idea: Memory Sharing of Snapshots (Called Q-Pensieve)

- Policy-level knowledge sharing: Snapshots can boost the learning in future iterations
- Each Q-network $Q_{\pi_k}(s, a, \lambda)$ can be good for some preference vector $\mathbf{\lambda}$

Pensieve: A magical device used to review and store memories

Q-Pensieve Policy Improvement Update

MO Soft Policy improvement

$$\pi_{k+1}(\cdot|\cdot;\lambda) = \arg\min_{\pi'\in\tilde{\Pi}} \mathcal{D}_{\mathrm{KL}} \left(\pi'\left(\cdot\mid s;\lambda\right) || \frac{\exp\left(\sup_{\lambda'\in W_{k}(\lambda),\mathbf{Q}'\in\mathcal{Q}_{k}}\left(\frac{1}{\alpha}\lambda^{\top}\mathbf{Q}'\left(\cdot,\cdot;\lambda'\right)\right)\right)}{Z_{\mathcal{Q}_{k}}\left(s\right)} \right)$$

$$\mathbb{W}_{}(\lambda) \text{ is a subset of } \Lambda \text{ containing } \lambda$$

$$\mathcal{Q}_{}(\lambda) \text{ is a set of } \mathbf{Q}\text{-snapshots containing } \mathcal{Q}_{}_{\pi_{k}}(s,a,\lambda)$$

Theorem (Convergence of Q-Pensieve)

Repeated application of soft policy evaluation and soft improvement to any $\pi \in \Pi$ converges to a policy π^* such that $\lambda^\top Q^{\pi^*}(s, a; \lambda) \ge \lambda^\top Q^\pi(s, a; \lambda)$ for all π , and all $(a, b, a) \in \mathcal{S} \times \mathcal{A}$ $\lambda \in \Lambda$

Implementation of Q-Pensieve

Experimental Results -Comparison with Baselines

Environments	Metrics	PFA	PFA	PGMORL	PGMORL	CN-DER	Q-Pensieve
		(1.5M steps)	$(1.5 \times \beta M \text{ steps})$	(1.5M steps)	$(1.5 \times \beta M \text{ steps})$	(1.5M steps)	(1.5M steps)
DST2d	$HV(\times 10^2)$	7.43 ± 3.68	8.67±1.49	8.10±1.57	8.13 ± 1.61	5.36 ± 4.71	10.21 ± 1.40
	UT	-9.27 ± 6.03	-6.86 ± 6.06	4.90 ± 0.44	5.02 ± 0.35	-5.10 ± 15.73	7.31 ± 0.91
	ED	0.13 ± 0.11	0.10 ± 0.08	0.25 ± 0.18	0.28 ± 0.18	0.21 ± 0.17	0.54 ± 0.11
HalfCheetah2d	$HV(\times 10^7)$	0.73 ± 0.19	1.31 ± 0.26	0.53 ± 0.17	$0.28 {\pm} 0.29$	2.08 ± 0.54	3.82 ± 0.27
	$UT(\times 10^3)$	0.31 ± 0.20	1.02 ± 0.40	-0.28 ± 0.94	0.09 ± 0.17	5.09 ± 3.57	5.61±0.31
	ED	0.08 ± 0.10	0.10 ± 0.06	0.01 ± 0.00	0.11 ± 0.05	0.02 ± 0.01	0.54 ± 0.08
Hopper2d	$HV(\times 10^6)$	0.49 ± 0.46	1.01 ± 0.62	0.63 ± 0.48	1.31 ± 0.48	$0.56 {\pm} 0.16$	1.33 ± 0.20
	$UT(\times 10^2)$	2.89 ± 1.93	3.50 ± 1.85	1.94 ± 2.46	3.70 ± 1.78	1.42 ± 1.00	4.08 ± 1.10
	ED	0.31 ± 0.17	0.41 ± 0.10	0.31 ± 0.25	0.31 ± 0.11	0.04 ± 0.03	0.43±0.09
Ant2d	$HV(\times 10^6)$	0.17 ± 0.05	0.77 ± 0.53	0.14 ± 0.03	0.13 ± 0.04	5.03 ± 3.60	10.01 ± 1.86
	$UT(\times 10^2)$	-0.06 ± 0.01	0.14 ± 0.14	-0.21 ± 0.15	-0.18 ± 0.38	3.68 ± 2.34	14.04 ± 3.03
	ED	0.22 ± 0.03	0.22 ± 0.02	0.21 ± 0.02	0.21 ± 0.03	0.21 ± 0.08	0.60±0.07
Walker2d	$HV(\times 10^6)$	0.52 ± 0.20	1.05 ± 0.44	0.83 ± 0.42	1.28 ± 0.66	0.42 ± 0.09	1.12 ± 0.36
	$UT(\times 10^2)$	0.23 ± 0.13	0.95 ± 0.55	0.38 ± 0.24	1.20 ± 0.67	3.17 ± 0.53	6.37 ± 1.42
	ED	0.32 ± 0.06	0.37 ± 0.09	0.30 ± 0.10	0.34 ± 0.12	0.21 ± 0.11	0.48 ± 0.10

Experimental Results -Sample Efficiency of Q-Pensieve

- Select 19 fixed preferences and learn 19 separate SAC models
- We achieve the same performance with only 1/19 of samples used by SAC

Summary

- We propose Q-Pensieve to boost the sample efficiency of MORL problems
- We present Q-Pensieve soft policy iteration in the tabular setting and show that it preserves the global convergence property
- Our theoretical and experimental results demonstrate that the proposed learning algorithm is indeed a promising approach for MORL problems