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ABSTRACT

We propose the gradient-weighted Object Detector Activation Maps (ODAM), a visual-
ized explanation technique for interpreting the predictions of object detectors. Utilizing
the gradients of detector targets flowing into the intermediate feature maps, ODAM pro-
duces heat maps that show the influence of regions on the detector’s decision for each
predicted attribute. Compared to previous works classification activation maps (CAM),
ODAM generates instance-specific explanations rather than class-specific ones. We show
that ODAM is applicable to both one-stage detectors and two-stage detectors with differ-
ent types of detector backbones and heads, and produces higher-quality visual explana-
tions than the state-of-the-art both effectively and efficiently. We next propose a training
scheme, Odam-Train, to improve the explanation ability on object discrimination of the
detector through encouraging consistency between explanations for detections on the same
object, and distinct explanations for detections on different objects. Based on the heat
maps produced by ODAM with Odam-Train, we propose Odam-NMS, which considers
the information of the model’s explanation for each prediction to distinguish the duplicate
detected objects. We present a detailed analysis of the visualized explanations of detectors
and carry out extensive experiments to validate the effectiveness of the proposed ODAM.

1 INTRODUCTION

Significant breakthroughs have been made in object detection and other computer vision tasks due to
the development of deep neural networks (DNN) (Girshick et al., 2014b). However, the unintuitive
and opaque process of DNNs makes them hard to interpret. As spatial convolution is a frequent
component of state-of-the-art models for vision tasks, class-specific attention has emerged to in-
terpret CNNs, which has been used to identify failure modes (Agrawal et al., 2016; Hoiem et al.,
2012), debug models (Koh & Liang, 2017) and establish appropriate users’ confidence about models
(Selvaraju et al., 2017). These explanation approaches produce heat maps locating the regions in the
input images that the model looked at, representing the influence of different pixels on the model’s
decision. Gradient visualization (Simonyan et al., 2013), Perturbation (Ribeiro et al., 2016), and
Class Activation Map (CAM) (Zhou et al., 2016) are three widely adopted methods to generate the
visual explanation map. However, these methods have primarily focused on image classification
(Petsiuk et al., 2018; Fong & Vedaldi, 2017; Selvaraju et al., 2017; Chattopadhay et al., 2018; Wang
et al., 2020b;a), or its variants, e.g., visual question answering (Park et al., 2018), video captioning
(Ramanishka et al., 2017; Bargal et al., 2018), and video activity recognition (Bargal et al., 2018).

Generating explanation heat maps for object detectors is an under-explored area. The first work in
this area is D-RISE (Petsiuk et al., 2021), which extends RISE (Petsiuk et al., 2018) for explaining
image classifiers to object detectors. As a perturbation-based approach, D-RISE first randomly gen-
erates a large number of binary masks, resizes them to the image size, and then perturbs the original
input to observe the change in the model’s prediction. However, the large number of inference calcu-
lations makes the D-RISE computationally intensive, and the quality of the heat maps is influenced
by the mask resolution (e.g., see Fig. 1b). Furthermore, D-RISE only generates an overall heat map
for the predicted object, which is unable to show the influence of regions on the specific attributes
of a prediction, e.g., class probability and regressed bounding box corner coordinates.

The popular CAM-based methods for image classification are not directly applicable to object de-
tectors. CAM methods generate heat maps for classification via a linear combination of the weights
and the activation maps, such as the popular Grad-CAM (Selvaraju et al., 2017) and its variants.
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(a) Grad-CAM

(b) D-RISE (5000 masks with 8x8)

(b) D-RISE (5000 masks with resolution 16x16)

(c) ODAM w/o Odam-Train (ours) (d) ODAM w/ Odam-Train (ours)

Figure 1: Comparison of heat maps from Grad-CAM (Selvaraju et al., 2017), D-RISE (Petsiuk et al., 2021) and
our ODAM. The white box shows the corresponding detected object. (a) Grad-CAM highlights all objects of
the same category (person) instead of the specific object instance. (b) D-RISE maps have noisy backgrounds
and its effectiveness depends on the mask size; the 16x16 mask is better for smaller objects (baseball bat) than
larger objects (person). (c) ODAM generates instance-specific heat maps with less noise and is robust to object
size. (d) With Odam-Train, the heat map is better localized over the object and separated from other objects.
However, Grad-CAM provides class-specific explanations, and thus produces heat maps that high-
light all objects of in a category instead of explaining a single detection (e.g., see Fig. 1a). For object
detection, the explanations should be instance-specific rather than class-specific, so as to discrimi-
nate each individual object. Exploring the spatial importance of different objects can help interpret
the models’ decision and show the important area in the feature maps for each prediction.

Considering that direct application of existing CAM methods to object detectors is infeasible and the
drawbacks of the current state-of-the-art D-RISE, we propose gradient-weighted Object Detector
Activation Maps (ODAM). ODAM adopts a similar assumption as Grad-CAM that feature maps
correlate with some concept for making the final outputs. Thus ODAM uses the gradients w.r.t. each
pixel in the feature map to obtain the explanation heat map for each attribute of the object prediction.
Compared with the perturbation-based D-RISE, ODAM is more efficient and generates less noisy
heat maps (see Fig. 1c), while also explaining each attribute separately.

We also explore a unique explanation task for object detectors, object discrimination, which aims
to explain which object was detected. This is different from the traditional explanation task of what
features are important for class prediction (i.e., object specfication). We propose a training scheme,
Odam-Train, to improve the explanation ability for object discrimination by introducing consistency
and separation losses. The training encourages the model to produce consistent heat maps for the
same object, and distinctive heat maps for different objects (see Fig. 1d). We further propose Odam-
NMS, which uses the instance-level heat maps from ODAM to aid the non-maximum suppression
(NMS) process of removing duplicate predictions of the same object.

The contributions of our paper are summarized as follows:
1. We propose ODAM, a gradient-based visual explanation approach to produce instance-specific

heat maps for explaining prediction attributes of object detectors, which is more efficient and
robust compared with the current state-of-the-art.

2. We demonstrate the generalizability of ODAM by exhibiting explanations on one- and two-
stage, and transformer-based detectors with different types of backbones and detector heads.

3. We explore a unique explanation task for detector, object discrimination, for explaining which
object was detected, and propose Odam-Train to obtain model with better object discrimination
ability.

4. We propose Odam-NMS, which uses the instance-level heat maps generated by ODAM with
Odam-Train to remove duplicate predictions during NMS, and its effectiveness verifies the
object discrimination ability of ODAM with Odam-Train.

2 RELATED WORKS
Object detection Object detectors are generally composed of a backbone, neck and head. Based
on the type of head, detectors can be mainly divided into one-stage and two-stage methods. Two-
stage approaches perform two steps: generating region candidates (proposals) and then using RoI
(Region of Interest) features for the subsequent object classification and location regression. The
representative two-stage works are the R-CNN family, including R-CNN (Girshick et al., 2014a),
Fast R-CNN (Girshick, 2015), Faster-RCNN (Ren et al., 2015), and Mask R-CNN (He et al., 2017).
One-stage methods remove the RoI feature extraction and directly perform classification and regres-
sion on the entire feature map, and typical methods are YOLO (Redmon et al., 2016), RetinaNet
(Lin et al., 2017b), and FCOS (Tian et al., 2019). Our ODAM can generate heat maps for both
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one- and two-stage detectors with no limitation of the types of backbones and heads, as well as
transformer-based detectors. We mainly adopt Faster R-CNN and FCOS in our experiments.

Explanation by visualization Since visualizing the importance of input features is a straightfor-
ward approach to interpret a model, many works visualize the internal representations of image
classifier CNNs with heat maps. Gradient visualization methods (Simonyan et al., 2013) backprop-
agate the gradient of a target class score to the input image to highlight the “important” pixels, and
other works (Springenberg et al., 2014; Zeiler & Fergus, 2014; Adebayo et al., 2018a) manipulate
this gradient to improve the results qualitatively (see comparison in (Mahendran & Vedaldi, 2016)).
The visualizations are fine-grained but not class-specific. Perturbation-based methods (Petsiuk et al.,
2018; Ribeiro et al., 2016; Lundberg & Lee, 2017; Dabkowski & Gal, 2017; Chang et al., 2018; Fong
& Vedaldi, 2017; Wagner et al., 2019; Lee et al., 2021) perturb the original input and observe the
changes in output scores to determine the importance of regions. Most black-box methods are intu-
itive and highly generalizable, but computationally intensive. Furthermore, the type or resolution of
the perturbation greatly influences the quality of visualization results.

CAM-based explanations, e.g. CAM (Zhou et al., 2016), Grad-CAM (Selvaraju et al., 2017), and
Grad-CAM++ (Chattopadhay et al., 2018), produce a heat map from a selected intermediate layer by
linearly combining its feature activation maps with weights that indicate each feature’s importance.
For example, Grad-CAM defines the weights as the global average pooling of the corresponding
gradient map, computed using back-propagation. Some gradient-free CAMs (Ramaswamy et al.,
2020; Wang et al., 2020b;a) adopt the perturbation to generate weights from class score changes.

Although Grad-CAM has been adopted to study adversarial context patches in single-shot object
detectors (Saha et al., 2020), the explanations are still category-specific. Petsiuk et al. (2021) de-
scribes the reasons that make direct application of existing classifier explanation methods infeasible
for object detector, and then proposes D-RISE (Petsiuk et al., 2018), a black-box perturbation-based
method. Hence, D-RISE inherits the pros and cons of RISE: high-generalizability due to the black-
box nature, but time-consuming and noisy due to the inference procedure. Wu & Song (2019)
estimates a latent-part model of each detected instance to explain its high-level semantic structure.

To explore white-box explanations of detectors, we propose ODAM, which uses gradient informa-
tion to generate importance heat map for instance-specific detector explanations. Based on ODAM,
we also propose Odam-Train training to improve the object discrimination of the instance-specific
explanations, which is infeasible with the class-specific heat maps and the classification task.

Advanced NMS Classic NMS assumes that multiple instances rarely overlap, and thus high IoU
(intersection over union) of two bounding boxes indicates duplicate detections. More advanced
NMS are proposed to mitigate the overdependence on IoU: SoftNMS (Bodla et al., 2017), Adap-
tiveNMS (Liu et al., 2019), Visibility Guided NMS (Gählert et al., 2020), RelationNet (Hu et al.,
2018), and Gnet (Hosang et al., 2017). These methods either use extra predicted cues, but still as-
sume that high IoU correspond to duplicate detections, or modify the detectors to be more complex.
Relying on IoU is not enough in crowded scenes where objects partially occlude each other, and thus
their IoUs are naturally large. In these cases, internal information about the predictions is required.
FeatureNMS (Salscheider, 2021) encodes features for predictions, and trains their distances between
the same object to be smaller than those of different objects. In contrast, we propose Odam-NMS,
which uses the correlations between instance-level heat maps and the their box IoUs to remove du-
plicate proposals of the same object. Compared with Salscheider (2021), our Odam-NMS is more
stable and can also be interpreted to explain which objects were detected (i.e., object discrimination).

3 METHOD

We propose our ODAM for explaining object detection with instance-level heat maps (Sec 3.1),
Odam-Train for improving explanations for object discrimination (Sec. 3.2), and Odam-NMS for
NMS in crowd scenarios using these explanations (Sec. 3.3).

3.1 ODAM: OBJECT DETECTOR ACTIVATION MAPS

Given an image I, the detector model outputs multiple predictions, with each prediction p consisting
of the class score s(p)c and bounding box B(p) = (x

(p)
1 , y

(p)
1 , x

(p)
2 , y

(p)
2 ). Our goal is to generate heat

maps to indicate the important regions that have a positive influence on the output of each prediction.

In Grad-CAM (Selvaraju et al., 2017) and its generalization Grad-CAM++ (Chattopadhay et al.,
2018), the final score for a particular class Yc is predicted from the whole image and the algorithm
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Figure 2: Our proposed framework. (a) ODAM generates instance-specific heat maps for explaining the pre-
dictions of an object detector; (b) ODAM-Train uses auxiliary losses to encourage heat maps for predictions on
the same object to be consistent, and for different objects to be distinct; (c) ODAM-NMS uses the box IoU and
the normalized correlation between heat maps to determine the duplicate detections. The bounding box shows
the detection proposal corresponding to the heat map.

ignores distinguishing object instances within. Their explanation starts from the assumption that the
score to be interpreted can be written as a linear combination of its global pooled last convolutional
layer feature maps {Ak}k, Yc =

∑
k w

c
k

∑
ij Aijk =

∑
ij

∑
k w

c
kAijk, where Aijk indexes location

(i, j) of Ak. Thus, the class-specific heat map Hc
ij =

∑
k w

c
kAijk summarizes the feature maps

with wc
k capturing the importance of the k-th feature. To obtain the importance of each feature

channel, Grad-CAM estimates wc
k by global average pooling the gradient map ∂Yc/∂Ak, while

Grad-CAM++ uses a weighted global pooling. However, both methods are limited to class-specific
explanations, due to computing a channel-wise importance, which ignores the spatial discrimination
information that is essential for interpreting different object instances.

Based on the above analysis, we assume that any predicted object attribute scalar Y (p) of a particular
instance p can be written as a linear element-wise weighted combination of the feature map, and then
the instance-specific heat map H

(p)
ij can be produced by summarizing the feature maps with weight

w
(p)
ijk that captures the importance of each pixel and each channel,

Y (p) =
∑

k

∑
ij
w

(p)
ijkAijk, H

(p)
ij =

∑
k
w

(p)
ijkAijk. (1)

Previous gradient-based works (Simonyan et al., 2013; Springenberg et al., 2014; Selvaraju et al.,
2017; Chattopadhay et al., 2018) have shown that the partial derivative w.r.t. Aijk can reflect the
influence of the k-th feature at (i, j) on the final output. However, such pixel-wise gradient maps
are typically noisy, as visualized in (Simonyan et al., 2013). Thus, we set the importance weight
map w

(p)
k according to the gradient map ∂Y (p)/∂Ak after a local smoothing operation Φ, and the

corresponding heat map for scalar output Y (p) is obtained through a pixel-weighted mechanism:

w
(p)
k = Φ

(
∂Y (p)

∂Ak

)
, H(p) = ReLU

(∑
k
w

(p)
k ◦Ak

)
, (2)

where ◦ is element-wise multiplication. Here, local pooling is utilized on the gradient map to pro-
duce a smooth weight map, while maintaining the important spatial discrimination information. We
adopt a Gaussian kernel for Φ in the experiments, and adaptively decide the size of the kernel based
on the size of predicted object in the feature map. Fig. 2a shows our ODAM framework.

When the scalar output Y (p) is a class score, ODAM highlights the important feature regions used
by the detector to classify the instance p. Note that Y (p) could be any differentiable attribute of the
predictions. For example, in our experiments we also examine the heat maps related to the predicted
coordinates of the regressed bounding box (see Fig. 3).

Our work is the first analysis and successful attempt to use a white-box method to generate instance-
level explanations for object detector predictions, rather than only class-level explanations. using
PyTorch, gradients of any scalar targets w.r.t. intermediate features can be calculated automatically
(Paszke et al., 2017). In this way, generating an ODAM explanation for one prediction takes about
2ms, which is much faster than the perturbation-based D-RISE, where using 5000 masks requires ∼3
minutes to process one image with FCOS. In Secs. 4.1 and 4.2, we qualitatively and quantitatively
verify that our ODAM can effectively explain the predicted results for each detection proposal.
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3.2 ODAM-TRAIN

Since the instance-specific heat maps may still “leak” onto other neighboring objects, especially in
crowded scenes (e.g., see Fig. 4a), we propose a training method Odam-Train for improving the heat
maps for object discrimination, to better explain which object was being detected. In order to focus
the detector to be better localized on a specific object area, and not overlapped with other objects,
Odam-Train encourages similar attention for different predictions of the same object, and separate
attentions for different objects (see Fig. 2b). Specifically, we propose a heat-map consistency loss
Lcon and a separation loss Lsep as auxiliary losses during detector training. Using the predicted con-
fidence scores as explanation targets, heat maps are first calculated by ODAM for all the positive
proposals, and then resized to the same size, and vectorized. The ODAM vectors are then organized
by ground-truth (GT) object, where P(p) = {H(p)

n }n is the set of ODAM vectors for positive pre-
dictions of the p-th GT object. For each GT object, the best prediction H

(p)
best is selected from P(p)

that has the highest IoU with the GT box. The consistency and separation losses are defined as:

Lcon =
∑

p∈GT

∑
n∈P(p)

− log cos(H
(p)
best , H

(p)
n ), Lsep =

∑
p∈GT

∑
m/∈P(p)

− log
(
1− cos(H

(p)
best , H

(¬p)
m )

)
, (3)

where H(¬p)
m are ODAM vectors for proposals not corresponding to the n-th GT object. The loss for

detector training is L = Ldetector + (Lcon + Lsep)/N , where N is the total number of ODAM vector
pairs during the loss calculation.

3.3 ODAM-NMS
In object detection, duplicated detections are removed in post-processing using NMS, which is based
on the assumption: two bounding boxes (bboxes) that are overlapped (high IoU) are likely to be
duplicated, and the bbox with lower-score (less confidence) should be removed. In particular, for
classical NMS, the predictions in list P are sorted by their confidence scores, then each prediction
p ∈ P is compared to the currently selected detections d ∈ D. If the IoU between p and any d ∈ D
is larger than a threshold Tiou, p is considered a duplicate and discarded. Otherwise p is added to D.
The classical NMS has shortcomings in crowded scenes because the key assumption does not hold
when objects are partially occluded by neighboring objects.

We propose Odam-NMS to mitigate this problem based on an observation that with Odam-Train,
the ODAM heat maps for different objects can be distinctive, even though their bboxes are heavily
overlapped (see the left and center heat maps in Fig. 2c). Meanwhile, even if the IoU of two predicted
bboxes is small, their explanations may be similar indicating the same object instance is detected.
For example, in Fig. 2c, the center and right predictions have low IoU but have heat maps with high
correlation. In other words, ODAM shows which object the model looked at to make the prediction,
which can intuitively assist NMS to better identify duplicate object predictions.

After the inference stage of the detector, we use ODAM to generate heat maps for each prediction
with the predicted confidence score. All the heat maps are resized to the same size with a short edge
length of 50, then vectorized. Normalized correlation is calculated between each pair of vectors
to represent the probability that the two predictions correspond to the same object. Odam-NMS
uses both the IoUs and heat map correlations between p and d ∈ D when considering whether a
prediction should be removed or kept. If the IoU is large (IoU ≥ Tiou) and the correlation is very
small (corr ≤ T l), then p is not a duplicate; If the IoU is small (IoU < Tiou) and the correlation
is very large (corr > Th), then p is a duplicate. Through these two conditions, Odam-NMS keeps
more proposals in the high-IoU range for detecting highly-overlapped crowded objects, and removes
more proposals in the low-IoU range for reducing duplicates. The pseudo code is in the App. A.1.

4 EXPERIMENTS

In this section we conduct experiments on ODAM to: 1) evaluate its visual explanations quali-
tatively and quantitatively, and compare with the current state-of-the-art method D-RISE (Petsiuk
et al., 2021); 2) evaluate the proposed Odam-NMS on crowded scenes. We mainly conduct the ex-
periments with one-stage detector FCOS (Tian et al., 2019) and two-stage detector Faster R-CNN,
(Ren et al., 2015) using ResNet-50 (He et al., 2016) as the backbone and FPN (Lin et al., 2017a) as
the neck. Two datasets are adopted for evaluation: MS COCO (Lin et al., 2014), a standard object
detection dataset, and CrowdHuman (Shao et al., 2018), containing scenes with heavily overlapped
objects. Experiments are performed using PyTorch and an RTX 3090 GPU. The training and testing
hyperparameters are the same as those of the baseline detectors.
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Q: The robot has detected the object inside the blue bounding
box, and gives four attention heat maps to explain why the
robot found the object. Please rank the Explanation A to
Explanation D by the order of the most reasonable to the
most unreasonable.

Detected Object A B C D

Detected Object

Detected Object

A B C D

A B C D

Examples of Questionnaire 1 Examples of Questionnaire 2

Detected Object Robot 1 Robot 2

Detected Object Robot 1 Robot 2

Detected Object Robot 1 Robot 2

Q: Two robots have detected the object
inside the blue bounding box, and give us
the attention heat maps to explain why they
found the object. Please choose the robot
that has a more reasonable explanation.

FCOS-
ResNet50

RetinaNet-
ResNet50

RetinaNet-
PVT

FCOS-
ResNet50

Faster RCNN-
ResNet50

DETR-
ResNet50

Figure 3: Heat map explanations of two instances (person and dog) computed from different detectors with
ResNet50 and pyramid vision transformer (PVT) (Wang et al., 2021) as backbones. (left) The heat maps
explain important regions for each predicted attribute (class score sc and bbox coordinates x1, y1, x2, y2) from
FCOS. In FCOS, the bbox coordinates are relative to the anchor center, with positive values indicating a larger
box, and thus the highlighted regions for the bbox coordinates are important for expanding the bbox. (right)
The combined heat maps for the entire predictions for one-stage RetinaNet, FCOS, the two-stage Faster R-
CNN, and transformer-based DETR (Carion et al., 2020). Features from the last stage of ResNet50 are used
to explain DETR because there is no detector neck, while features from Feature Pyramid Network (FPN) (Lin
et al., 2017a), the detector neck, are used for other methods.

4.1 QUALITATIVE EVALUATION OF VISUAL EXPLANATIONS

Evaluation via visualization In order to verify the interpretability of visualizations, we generate
visual explanations for different prediction attributes (class score, bbox regression values) of two
specific instances using various detector architectures with the two types of backbones. To obtain
a holistic view of the explanations generated by different models, we compute a combined heat
map based on element-wise maximum of heat maps for the predicted class and bbox regression,
Hcomb = max(Hclass, Hx1 , Hy1 , Hx2 , Hy2).

Here we adopt the original baseline detector models (Odam-Train results are visualized in
the next experiment). A set of example results are presented in Fig. 3 (left), and we
have the following observations from examining many such examples (see App. A.5.5): 1)
When predicting the object class, the model attends to the central areas of the object; 2)
when regressing the bbox, the model focuses on the extent of the object, (see App. A.5.6
for more examples); 3) For the same target, models from different detectors show attention
on different regions, even though they all detect the same instance with a high confidence.
Thus, developers can have an intuitive judgment about the model through explanation maps.

IoU=0.81
Corr=0.88

IoU=0.56  
Corr=0.58

IoU=0.28
Corr=0.41

(a) Without Odam-Train 

(b) With Odam-Train 

IoU=0.74  
Corr=0.35

IoU=0.55  
Corr=0.07

IoU=0.32
Corr=0.06

Average heat map

Average heat map

Figure 4: Comparison of heat maps from
FCOS without and with Odam-Train. (left)
The average heat map over the high-quality
predictions with confidence score over 0.1.
(right) Instance-specific heat maps of some
predictions on different objects, with the IoU
and correlation between each pair of predic-
tions displayed in the middle.

From the combination maps (Fig. 3 right), which consider
both classification and bbox regression, the right arm of
the person and the head of the dog are commonly impor-
tant for the detectors, although the heat maps look differ-
ent. More examples are in App. A.5.7.

We further compare the visualizations of Grad-CAM,
D-RISE and our ODAM (w/o and w/ Odam-Train) in
Fig. 1. The results are all generated with FCOS with
FPN, and both Grad-CAM and ODAM use class score
targets, while D-RISE uses the same mask settings as Pet-
siuk et al. (2021) to find the attention area of predictions.
Our ODAM demonstrates a strong ability of generating
clear and distinct instance-specific heat maps. In contrast,
Grad-CAM is class-specific (highlighting all the people
for each detected person), and D-RISE contains “speck-
les” in the background due to the random masking mech-
anism. See App. A.5.4 for more examples.

Visualization w/ and w/o Odam-Train Next we compare the heat maps from ODAM using the
baseline detector trained with and without Odam-Train. The heat maps for each proposal are com-
puted by ODAM with its confidence score as the explanation target. Although the original heat maps
without Odam-Train (Fig. 4a) can locate the object well, the attention is spread to its overlapping
neighbors, which makes the correlations between them relatively high. Using the consistency and
separation losses in (3), Odam-Train yields well-localized heat maps for the same object and distinc-
tive heat maps for different objects, which better shows which object was being detected, improving
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Del.
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(c)
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Figure 5: Average prediction score vs. (a) Deletion steps
and (b) Insertion steps. (c) The IoU between the ground
truth object mask and thresholded explanation heat map.

Table 1: Evaluation of faithfulness: AUC for
Deletion, Insertion and Visual Explanation Ac-
curacy (VEA) curves in Fig. 5.

Method Del.↓ Ins.↑ VEA ↑
Grad-CAM 92.79 36.78 0.039
Grad-CAM++ 92.52 36.18 0.027
D-RISE 73.35 43.35 0.157
ODAM 72.68 50.33 0.163

w/ Odam-Train 74.45 46.66 0.143

object discrimination. As seen in Fig. 4b, different people in the crowd can be separated by their
low heat-map correlation, even when they have high IoU.

4.2 QUANTITATIVE EVALUATION OF VISUAL EXPLANATIONS

We evaluate faithfulness using Deletion, Insertion (Samek et al., 2016; Chattopadhay et al., 2018;
Wang et al., 2020b;a; Petsiuk et al., 2021) and visual explanation accuracy (Oramas Mogrovejo et al.,
2019), and also evaluate on the user trust of the produced heat maps. For evaluating localization, we
adopt Pointing games (Zhang et al., 2018). Meanwhile, we propose an object discrimination index
(ODI) for measuring the interpretation ability of object discrimination. For comparison, we imple-
ment D-RISE using 5000 masks with resolution of 16×16 as in (Petsiuk et al., 2021). FCOS is used
as baseline model and the features from FPN are adopted to generate heat maps. The best matched
predictions of the well-detected objects (IoU > 0.9) in the evaluation dataset are interpreted by
each explanation method. The confidence scores of predictions are used as the explanation targets
in ODAM, Grad-CAM and Grad-CAM++. Besides the MS COCO val set, results of the Pointing
game and ODI are also reported on CrowdHuman validation sets.

Deletion and Insertion A faithful heat map should highlight the important context on the im-
age. Deletion replaces input image pixels by random values step-by-step using the ordering of the
heatmap (most important first), then measures the amount of the predicted confidence score drops
(in percentage). Insertion is the reverse operation of deletion, and adds image pixels to an empty
image in each step (based on heatmap importance) and records the average score increase. The
average prediction score curves are presented in Fig. 5(a-b), and Tab. 1 reports the area under the
curve (AUC). Lower Deletion AUC means steeper drops in score, while higher Insertion AUC means
larger increase in score with each step. Our methods have the fastest performance drop and largest
performance increase for Deletion and Insertion, which shows that the regions highlighted in our
heat maps have larger effects on the detector predictions, as compared to other methods. Faithful-
ness metrics when using Odam-Train are slightly worse than without it, but still better than previous
works on Insertion and VEA. Note that instance-specific explanations (ours and D-RISE) signifi-
cantly surpass the classification explanation methods (Grad-CAM, Grad-CAM++).

Visual explanation accuracy (VEA) VEA measures the IoU between the GT and the explanation
heat map thresholded at different values. We use the MS COCO GT object masks for this evaluation,
and results are presented in Fig.5(c). Our method obtains the highest IoU when the threshold is small
(T < 0.4), and the IoUs decrease as the threshold increases. This demonstrates that our heat map
energy is almost all inside the object (consistent with energy PG results in Tab. 4). In contrast,
the low IoUs of the previous methods at a small threshold indicate that their heatmaps contains
significant amounts of energy outside the object mask. For Grad-CAM/Grad-CAM++, the IoUs
decrease when the threshold increases, which suggests that there are more large heat map values
outside the object mask than inside the mask (they are not object-instance specific). For D-RISE,
the IoU increases as the threshold increases, which indicates that the heat map values inside the
object mask are larger than those outside the mask. Overall, our method has better IoU (0.421 at
T=0.1) compared to D-RISE (0.249 at T=0.7), which is also verified by the VEA AUC in Tab. 1.

User Trust The interpretability of visual explanations is evaluated through a human trust test.
Heat maps are generated by D-RISE, Grad-CAM, Grad-CAM++, and ODAM for 120 correctly-
detected objects out of 80 classes from the MSCOCO val set (1-2 instances for each class). For each
object, users are asked to rank the maps from the four methods by the order of which map gives
more reasonable insight about how the target object was detected. We collect 10 responses for each
object from a total number of 40 users (30 objects per user), totaling 1200 responses. The results
are presented in Tab. 2. ODAM is ranked 1st place 53.8% of trials and 2nd place 35.4%, which is
significantly better than D-RISE (χ2 test, p<0.001). Overall, ODAM has significantly better average
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Table 2: User trust results: (left) percentage of
rankings for each method; (right) average rank
(AR).

Method 1st 2nd 3rd 4th AR
Grad-CAM 3.9 12.9 30.5 52.7 3.3

Grad-CAM++ 7.3 22.2 43.1 27.5 2.9
D-RISE 35.1 29.5 17.5 17.9 2.2
ODAM 53.8 35.4 8.9 1.9 1.6

Table 3: (a) Comparison of Object Discrimination In-
dex (%) using GT bbox or mask. (b) User-study on
object discrimination. CH is CrowdHuman dataset.

(a) MS COCO CH (b) CH
box ↓ mask ↓ box ↓ Acc ↑ Conf ↑

Grad-CAM 77.0 72.7 91.4 14.2 1.7
Grad-CAM++ 77.3 73.2 92.0 18.8 1.5
D-RISE 71.0 66.3 95.3 60.7 2.4
ODAM 34.8 19.5 56.9 94.0 4.6

w/ Odam-Train 34.1 18.7 51.3 94.7 4.8
Table 4: Comparison of Pointing Game (PG) accuracy with ground-truth bounding boxes (b) or segmentation
masks (m), energy-based PG with box or mask, and Heat Map Compactness (Comp.).

MS COCO CrowdHuman
PG(b)↑ PG(m)↑ enPG(b) ↑ enPG(m) ↑ Comp.↓ PG(b)↑ enPG(b) ↑ Comp.↓

Grad-CAM 26.7 22.5 20.7 15.0 4.34 15.7 9.7 3.99
Grad-CAM++ 26.6 20.2 20.0 14.8 4.91 15.4 11.4 3.84
D-RISE 82.6 68.0 17.4 12.0 5.17 1.5 1.7 3.53
Ours 91.9 82.6 73.1 57.1 1.36 95.5 79.5 1.04
Ours w/ Odam-Train 93.3 83.9 79.6 63.9 1.32 97.3 83.9 0.91

rank of 1.6 compared to others (Wilcoxon signed-rank test, p<0.001). The significantly higher
human trust of ODAM demonstrate its superior instance-level interpretability for object detection.

From another aspect, previous studies evaluated trust between humans and machine learning sys-
tems by seeing if better models had better explanation maps according to humans. Following Sel-
varaju et al. (2017); Petsiuk et al. (2021), ODAM maps are generated for 120 objects that are cor-
rectly detected by two FCOS-ResNet50 models with different performance (36.6% mAP and 42.3%
mAP). Excluding the samples where users thought the explanations were similar quality, the better
model (42.3% mAP) received more responses that its explanations were more trustworthy (38.2%
vs. 28.6%). More details are provided in the Appendix A.2.

Pointing Game (PG) To quantitatively evaluate the localization ability, we report results of the
PG metric. For PG, the maximum point in the instance-level heat map is extracted and a hit is
scored if the point lies within the GT object region (either bbox or instance mask). Then the PG
accuracy is measured by averaging over the test objects. Since PG only considers the maximum
point, but not the spread of the heat map, we also adopt the energy-based PG (Wang et al., 2020b),
which calculates the proportion of heat map energy within the GT object bbox or mask (versus the
whole map). Finally, to show the compactness of the heat map, we calculate the weighted standard

deviation of heat-map pixels, relative to the maximum point: Comp. =
(

1∑
x Sx

∑
x

Sx||x−x̂||2
1
4 (h

2+w2)

) 1
2 ,

where Sx is the heat map value at location x, x̂ is the maximum point of the heat map, and (w, h)
are the width and height of the GT box. The denominator normalizes the distance w.r.t. the object
size. Smaller compactness values indicate the heat map is more concentrated around its maximum.

Both Grad-CAM and Grad-CAM++ perform poorly on both datasets since they generate class-
specific heat maps. Our ODAM yields significant improvements over D-RISE on all the metrics.
Specifically, D-RISE cannot work well on CrowdHuman, which only contains one object category.
Since D-RISE uses the similarities between predictions of masked images and the original image to
decide the mask weights, for datasets with few object categories, the predicted class probabilities
provide less useful information when calculating the weights. Finally, using Odam-Train further
improves the localization quality by generating heat maps that are well-localized on the objects.

Object Discrimination To evaluate the object discrimination ability of the heat maps, we propose
the object discrimination index (ODI), which measures the amount of heat map energy that leaks to
other objects. Specifically, for a given target object, the ODI is the proportion of heat map energy
inside all other objects’ bboxes (or segmentation masks) w.r.t. the total heat map energy inside all ob-
jects in the image (i.e., ignoring background regions). The averaged ODIs are presented in Tab. 3a.
Compared with others, ODAM consistently shows the least energy leaking out to other objects.
Note that when using the tighter GT mask on MSCOCO, ODAM obtains the largest proportion of
decrease, which indicates that the heat map can better focus on the explained target, even if its bbox
overlaps with other objects. Using Odam-Train significantly improves object discrimination in the
crowded scenes of CrowdHuman, although there is a tradeoff with faithfulness (see Tab. 1). Finally,
we conduct a user study on object discrimination (details in App. A.3). The results in Tab. 3b show
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Table 5: Comparisons of NMS strategies on CrowdHuman validation set. All models are trained with the same
baseline implementation. The timing is for the whole pipeline: detector and heat map inference, and NMS.

FCOS Faster RCNN
AP↑ JI↑ MR↓ Recall time (s/img) AP↑ JI↑ MR↓ Recall time (s/img)

NMS 87.8 78.4 45.5 93.2 0.114 86.9 79.5 43.2 90.3 0.092
Soft-NMS 80.8 74.9 89.0 93.0 0.47 76.5 61.9 84.8 92.3 0.284
FeatureNMS 89.3 78.1 45.6 95.4 0.145 82.0 65.7 68.8 94.9 0.120
Odam-NMS (ours) 89.3 81.1 44.5 95.5 0.178 88.1 80.5 42.8 91.5 0.140

that users are more accurate and more confident at object discrimination using ODAM compared
to previous works (χ2 test, p<.0001; t-test, p<.0001), and that using Odam-Train further improves
user confidence (t-test, p=.02). These results are consistent with the quantitative evalution with ODI.

4.3 EVALUATING ODAM-NMS

We evaluate Odam-NMS with Odam-Train for improving detection in crowded scenes. To evalu-
ate the performance of NMS on heavily overlapped situations, we adopt the CrowdHuman dataset,
which contains an average 22.6 objects per image (2.4 overlapped objects). We compare Odam-
NMS with NMS, SoftNMS, and FeatureNMS, using both FCOS and Faster RCNN. The IoU thresh-
old is set to Tiou = 0.5 for both NMS and our method. Soft-NMS uses Gaussian decay with σ = 0.5
and final threshold of 0.05. For FeatureNMS, the IoU range is set to (0.9, 0.1) following Salscheider
(2021). The aspect ratios of the anchors in Faster R-CNN are set to H : W = {1, 2, 3} based on
the dataset, and other parameters are the same as in the baselines. Training runs for 30 epochs. We
use Th = 0.8, T l = 0.2 based on the ablation study in the App. A.4.1. We adopt three evaluation
criteria: Average Precision (AP50); Log-Average Missing Rate (MR), commonly used in pedestrian
detection, which is sensitive to false positives (FPs); Jaccard Index (JI). See Chu et al. (2020) for
details. Smaller MR indicates better results, while larger AP50 and JI are better.

Tab. 5 shows the results. Soft-NMS performs poorly in crowd scenes, generating many false posi-
tives in high-score region (high MR) with a long processing time. For FCOS, AP performance of
FeatureNMS is much higher than NMS, while JI and MR are similar. However for Faster RCNN,
although FeatureNMS obtains a high recall, the others are worse than NMS, indicating that the fea-
ture embeddings trained with the cropped features in two-stage detectors are not distinctive enough,
and there are many false positives in detections. The learned embeddings in FeatureNMS have no
explicit meaning except the relative distance between each pair, while Odam-NMS directly uses heat
maps that offer explanations of the detector model. With the default IoU threshold, our Odam-NMS
achieves better JI and MR than NMS and FeatureNMS for both detectors (FCOS and Faster RCNN).
Meanwhile, Odam-NMS also achieves the best AP with Faster RCNN. The limitation of Odam-
NMS is that generating heat maps for dense predictions takes slightly longer. Overall, these results
verify the object discrimination interpretation ability of ODAM with Odam-Train and demonstrate
that the instance-level explanation for predictions can help improve NMS in crowd scenes.

5 CONCLUSION

In this paper, we propose ODAM, a white-box gradient-based instance-level visualized explanation
technique for interpreting the predictions of object detectors. ODAM can produce instance-specific
heat maps for any prediction attribute, including object class and bounding box coordinates, to show
the important regions that the model uses to make its prediction. Our method is general and ap-
plicable to one- and two-stage and transformer-based detectors with different detector backbones
and heads. Qualitative and quantitative evaluations demonstrate the advantages of our method com-
pared with the class-specific (Grad-CAM) or black-box works (D-RISE). We also propose a training
scheme, OdamTrain, which trains the detector to produce more consistent explanations for the same
detected object, and distinct explanations for different objects, thus improving object discrimination.
Experiments show that Odam-Train is effective at improving localization in the explanation map and
object discrimination. Finally, we propose Odam-NMS, which utilizes the explainability of ODAM
to identify and remove duplicate predictions in crowd scenarios. Experiments on different detectors
confirm its effectiveness, and further verify the interpretability provided by ODAM for both object
specification and object discrimination. Finally, we note that there appears a tradeoff between faith-
fulness and object discrimination in the explanation maps, since high object discrimination implies
not using context information. Future work will consider how to manage this tradeoff.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS: ODAM-TRAIN AND ODAM-NMS
For Odam-Train on MSCOCO, the detector training pipeline is totally the same as the baseline (Tian
et al., 2019; Ren et al., 2015), which uses SGD as the optimizer running for 12 epochs with batch-
size 16, learning rate 0.2 for two-stage Faster R-CNN and learning rate 0.1 for FCOS. For training
on CrowdHuman, the aspect ratios of the anchors in Faster R-CNN are set to H : W = {1, 2, 3} : 1
since the dataset contains people, and training runs for 30 epochs. Other parameters are the same as
in training on MSCOCO.

Since there are many predictions from the object detector, calculating gradients of each prediction
w.r.t. the feature maps one-by-one will incur an unacceptably long time cost for ODAM-Train and
ODAM-NMS. To enable efficient ODAM-Train and ODAM-NMS, we adopt the RoI-pool features
in the two-stage detector as Ak, since the gradients w.r.t. this layer for all predictions can be com-
puted in a batch with the “autograd” function in PyTorch. As for one-stage detectors, the output
features from the Feature Pyramid Network (FPN) Lin et al. (2017a) are adopted, and their gra-
dients are computed in a batch through expansion of the gradient calculations Liu & Chan (2022)
into a “reversed” detector head. This substantially improves the efficiency of ODAM-Train and
ODAM-NMS (see Tab. 5 for the time cost per image).

The pseudo-code for Odam-NMS is presented in Algorithm 1.

Algorithm 1 Odam-NMS: predictions are
removed or kept based on both the IoU
and the correlation between ODAM heat
maps.
P ← GetPredictions(imageI)
P ← SORT (P )
D ← ∅
while P ̸= ∅ do

p← POP (P )
isDuplicate← false
for d ∈ D do

iou← GetIoU(p, d)

corr ← NormCorrelation(S(p)
yc

, S(d)
yc

)

if iou ≥ Tiou and corr > T l then
isDuplicate← true

else if iou < Tiou and corr > Th then
isDuplicate← true

end if
end for
if ¬isDuplicate then

PUSH(p,D)
end if

end while
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A.2 USER TRUST ON EXPLANATION FAITHFULNESS EVALUATION

We present the form of the questionnares and some samples that we used in the two user trust tests
in Fig. 6.

Q: The robot has detected the object inside the blue bounding

box, and gives four attention heat maps to explain why the

robot found the object. Please rank the Explanation A to

Explanation D by the order of the most reasonable to the

most unreasonable.

Detected Object A B C D

Detected Object

Detected Object

A B C D

A B C D

Examples of Questionnaire 1 Examples of Questionnaire 2

Detected Object Robot 1 Robot 2

Detected Object Robot 1 Robot 2

Detected Object Robot 1 Robot 2

Q: Two robots have detected the object

inside the blue bounding box, and give us

the attention heat maps to explain why they

found the object. Please choose the robot

that has a more reasonable explanation.

Figure 6: In the first questionnaire, the human needs to rank the heat maps from four explanation methods,
including D-RISE, Grad-CAM, Grad-CAM++ and ODAM (ours). In the second questionnaire, the human is
asked to choose the more reasonable heat map from the two explanations, which are generated from models of
different performance (36.6% mAP and 42.3% mAP). The labels for options are assigned randomly for each
question.

A.3 USER TRUST ON OBJECT DISCRIMINATION EVALUATION

Since the user trust study in Sec. 4.2 only evaluate explanations from the faithfulness aspect, which
shows how reasonable the heat maps explain the predictions, we further conduct a user study on
object discrimination ability. In this test, users are asked to draw a bounding box on the image,
pointing out which object they think the AI has detected, based on the shown heat map. Meanwhile,
the users also need to provide their confidence level from most uncertain (1) to most certain (5) when
making the choice. For each method (D-RISE, Grad-CAM, Grad-CAM++, ODAM and ODAM with
Odam-Train), 150 samples are sent out to 10 users with one user answering 15 images. Since the
purpose is to test whether the heat maps can effectively show which object was detected, especially
in the crowded scene, we choose the samples from the CrowdHuman validation set. Since users will
have different ways to draw the box around the object, a separate marker manually inspected the
user’s boxes to see if they align with the GT object box in order to determine correctness. During
this process, the marker does not know which explanation method was used for each image.

Tab. 6 presents the number of examples (in percentage) under each confidence level and the accuracy
of users’ decisions (the ratio of users’ correct choices) based on heat maps of each method. The
results show that the user can obtain a much higher accuracy (χ2 test, p<.0001) and confidence (t-
test, p<.0001) with heat maps from both ODAM and ODAM with Odam-Train. Furthermore, using
Odam-Train further improves the average user confidence (t-test, p=0.024). Using Odam-Train,
users have higher confidence (83.99% vs. 70.68% at most certain) about their decision, which
demonstrates our method is superior on object discrimination ability, especially with the model after
Odam-Train. Some incorrect and correct user’s choices are displayed in Fig. 7.
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Table 6: Results of user study on object discrimination: (top) the percentage of confidence levels of user
responses; (bottom) the average confidence, and the accuracy for correct object discrimination.

Confidence Grad-CAM Grad-CAM++ D-RISE ODAM ODAM w/ Odam-Train
1 (least) 53.38 63.76 20.67 0 0
2 30.41 24.16 36.67 0.67 1.35
3 10.14 6.71 26.01 7.33 3.33
4 5.41 4.70 11.98 21.34 11.33
5 (most) 0.68 0.67 4.68 70.68 83.99
avg. conf. 1.70 1.54 2.43 4.62 4.78
accuracy 14.19 18.79 60.67 94.00 94.67FCOS-

ResNet50
RetinaNet-
ResNet50

RetinaNet-
PVT

FCOS-
ResNet50

Faster RCNN-
ResNet50

Confidence:3

ODAM

Confidence:3

D-RISE

Confidence:3

Grad-CAM

Confidence:3

Grad-CAM++

Confidence:3

ODAM w/ Odam-Train

(a) Examples of user’s incorrect choice

Grad-CAM

Confidence:4 Confidence:2

Grad-CAM++

Confidence:4

D-RISE

Confidence:4

ODAM

Confidence:4

ODAM w/ Odam-Train

(b) Examples of user’s correct choice

DETR-
ResNet50

Figure 7: Examples of (a) user’s incorrect choices and (b) user’s correct choices with heat maps of Grad-CAM,
Grad-CAM++, D-RISE, ODAM and ODAM with Odam-Train, respectively. In the user trust test on object
discrimination, users are asked to draw the bounding box of the object which was detected based on the given
heat map. Blue boxes are those drawn by users, while red boxes are those of the ground truth objects. Note that
in CrowdHuman, the ground-truth boxes are for the full person, even when the person is partially occluded.
The user’s confidences when choosing the objects are also displayed.
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Fig. 8 shows a more detailed view of the histogram of users’ correctness and confidences compared
with the ODIs (object discrimination index, proposed in Sec. 4.2) of the tested samples. Higher ODI
means more heat map energy is leaking out to other objects, while less energy is in the explained
target object. Except for ODAM (w/ or w/o Odam-Train), most heat maps of other methods have
high ODIs (larger than 0.6). We can find that users tend to have lower confidence and make incorrect
decisions with these high-ODI heat maps from other methods. In contrast, for ODAM (w/ and w/o
Odam-Train), users have higher confidence and make correct decisions even for high ODI samples.
These results demonstrate that ODAM can improve the user trust in the object discrimination of the
detector.

incorrect correct
Grad-CAM
Grad-CAM++
D-RISE
ODAM
ODAM (w/ Odam-Train)

1 2
Grad-CAM
Grad-CAM++
D-RISE
ODAM
ODAM (w/ Odam-Train)

3 4 5
confidence

(a)

(b)

Figure 8: User study on object discrimination: the histogram of users’ (a) correctness and (b) confidences
vs. the test samples’ object discrimination index (ODI).
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A.4 MORE ABLATION STUDIES

A.4.1 EFFECTS OF THRESHOLDS IN ODAM-NMS

Figure 9 shows the results comparing various combinations of low and high correlation thresholds,
T l and Th, for Odam-NMS with the FCOS detector. We compare with classical NMS, correspond-
ing to T l = 0, Th = 1. The results for all the three metrics are improved by increasing T l to
0.1-0.2, which indicates that some high-IoU crowded objects are successfully kept through their low
correlation values. Then with the T l further increasing, MR and JI starts to get worse, since more
false positives are introduced. As for Th, two proposals are regarded as the same object if their cor-
relation exceeds Th, even though their IoU is smaller than the Tiou. Since using Th < 1 will reduce
the recall rate, and AP50 is highly depends on the recall, Th shows no benefit to AP50. MR and JI
have better performance by decreasing the Th when T l is fixed. This indicates that using a Th < 1
can indeed remove low-IoU false positives, although the performance improvement is slight. Based
on the results in Fig. 9, we adopt Th = 0.8 and T l = 0.2 in the experiments.
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Figure 9: Effects of thresholds T l and Th in Odam-NMS. The black star marks the results for classical NMS,
in which T l = 0 and Th = 1.

A.4.2 ANALYSIS ON RECALLS WITH ODAM-NMS

To verify that more crowded objects can be recalled using Odam-NMS, we compare the recalls
of the baseline detectors with or without Odam-NMS for both crowded and uncrowded instances.
Since the recall is related to the confidence score threshold, we use the thresholds corresponding to
the best JI for each method for fair comparison. Based on (Chu et al., 2020), we define the “crowd”
set and “sparse” set, where the ground-truth boxes that overlap with some other ground truth with
IoU > 0.5 comprise the “crowd” set and the other GT boxes as the “sparse” set. The results are
shown in Tab. 7. The recall percentage on the crowd set is much lower than on the sparse set. Using
Odam-NMS improves the recall percentage of crowded objects compared to the baseline, e.g., recall
is improved by 4% for Faster R-CNN and 13.5% for FCOS.

Table 7: Comparison of recalls on the “crowd” and “sparse” set from CrowdHuman validation set.

Ground FasterRCNN FasterRCNN FCOS FCOS
truth +ODAM-NMS ∆ +ODAM-NMS ∆

Total 99,481 79,090 (79.5%) 80,111 (80.5%) +1% 74,946 (75.3%) 80,650 (81.1%) +5.8%
Sparse 78,273 65,480 (83.6%) 65,639 (83.8%) +0.2% 61,890 (79.0%) 64,726 (82.7%) +3.7%
Crowd 21,208 13,610 (64.2%) 14,472 (68.2%) +4% 13,056 (61.6%) 15,924 (75.1%) +13.5%

A.4.3 ODAM-NMS WITH AND WITHOUT ODAM-TRAIN

In Sec. 4.2, we evaluate Odam-NMS with the model when using Odam-Train. Here we provide the
ablation studies evaluating Odam-NMS with and without using Odam-Train. The results are shown
in the Tab. 8. When using the classical NMS, the baseline detector model yields similar and com-
parable results with and without using Odam-Train, which demonstrates that Odam-Train will have
little influence on the baseline model performance when improving the explanation ability. This is
a desirable property since we hope that providing explanations will not hinder the detector perfor-
mance. As for Odam-NMS, Odam-Train brings an obvious improvement with the same parameter
setting (Th = 0.8 and Tl = 0.2) as compared to without Odam-Train. This shows that model
can be trained to give more consistent and separated explanations that benefit duplicate detection
removal. Furthermore, without Odam-Train, Odam-NMS needs the stricter judgment conditions to
make more reasonable decisions, such as increasing Th and reducing Tl, to obtain better results.

Table 9 illustrates the recalls on the “crowd” and “sparse” set when the FCOS model is trained with
or without Odam-Train, and uses classical NMS or Odam-NMS in the post-processing. When using
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Table 8: Comparisons of NMS performances with and without Odam-Train on the CrowdHuman validation set
for both FCOS and Faster RCNN detectors. Th and T l are the correlation thresholds in the Algorithm 1. The
IoU threshold for all NMS methods is 0.5.

FCOS Faster RCNN
Odam-Train Th T l AP↑ JI↑ MR↓ AP↑ JI↑ MR↓

NMS - - 87.8 78.4 45.5 86.9 79.5 43.2√
- - 87.5 78.9 45.6 87.0 79.3 43.8

Odam-NMS
0.8 0.2 87.5 78.5 54.0 88.9 78.7 44.3
0.9 0.1 88.6 80.4 45.5 89.0 79.8 43.7√
0.8 0.2 89.3 81.1 44.5 88.1 80.5 42.8

NMS with Odam-Train or Odam-NMS without Odam-Train, the recall rate is improved compared
with the classical NMS without Odam-Train. However, the comprehensive metrics (e.g. AP, JI
and MR) are not better accordingly (shown in Tab. 8) because the number of false positives is also
increased. Specifically, using Odam-NMS with Odam-Train, the recall is best on the crowd set and
also obtains superior performance in Tab. 8 by reducing the number of false positives.
Table 9: Comparison of recalls using NMS and Odam-NMS for FCOS detector model with and without Odam-
Train on the “crowd” and “sparse” set from CrowdHuman validation set. “Conf.” is the confidence threshold
used to give the best JI score. For Odam-NMS, the correlation thresholds Th and T l are set to 0.8 and 0.2.

GT NMS Odam-NMS
Odam-Train -

√ √

Total 99,481 74,946 (75.3%) 78,097 (78.5%) 80,697 (81.1%) 80,650 (81.1%)
Sparse 78,273 61,890 (79.0%) 64,252 (82.1%) 65,402 (83.6%) 64,726 (82.7%)
Crowd 21,208 13,056 (61.6%) 13,845 (65.3%) 15,295 (72.1%) 15,924 (75.1%)

In summary, the ablation studies indicate that, since Odam-NMS makes decisions based on heat-
map correlations, it relies on good quality explanations, and using Odam-Train is beneficial because
it encourages the model to produce consistent and distinctive heat maps on detections of the same
or different object.

A.5 MORE EVALUATIONS OF VISUAL EXPLANATIONS

Here we provide more evaluations about the visual explanations generated by ODAM.

A.5.1 SANITY CHECKS

Adebayo et al. (2018b) develops sanity checks for saliency methods. Specifically, they compare
explanation methods to edge detection techniques, and show that some methods are independent of
both the model or training data, but still produce outputs visually similar to those of explanation
methods. We adopt the model parameter randomization test proposed in (Adebayo et al., 2018b)
to compare the predicted heat maps of the trained model and the untrained model. Fig. 10 shows
that the weight randomization results in totally incorrect predictions and corresponding heat maps,
which means that our method is related to the predicted instances and relies on the model parameters
to produce the explanations.

(a) trained model (b) untrained model

Figure 10: Sanity check. The predictions of “person” and corresponding heat maps generated from trained
model and untrained model (with weight randomization).
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A.5.2 ANALYZING ERROR MODES OF DETECTOR

We use ODAM to analyze the error modes of detector. For the high confidence but poorly localized
cases, we generate explanations of the wrong predicted extents and compare them with the correct
localization results. As shown in Fig. 11, the model highlights that the wrong extents were misled
by the leg of the person and the sea horizon.

True positive prediction of “surfboard” Mislocalized predictions of “surfboard”

Classified as “laptop” Classified as “keyboard”

Classified as “toilet” Classified as “sink”

Figure 11: Explanations of the predictions of the right extent (x2 in bounding boxes) for different predictions
of “surfboard”. The heat maps for the mislocalized predictions highlight the visual features that induced to the
wrong extents (the leg on the right, and the sea horizon).

To analyze classification decisions of the model, we generate explanations of the class scores. In
Fig. 12, the model correctly classifies an instance as “bed” when seeing the cushion of the bed,
but also mistakenly predicts “bench” based on a long metal bed frame at the end of the bed. In
another example, a person is fixing a wheel on the ground, and two motorcycles are parked nearby.
The detector correctly finds the person, but also mistakenly detects a motorcycle on the person, by
combining the features from the two motorcycles. This shows a failure mode of the detector, where
sometimes the context feature (a person next to unrelated motorcycle parts) may bring negative
influence to the detection result.

True positive prediction of “surfboard” Mislocalized predictions of “surfboard”

Classified as “bed” Classified as “bench”

Classified as “toilet” Classified as “sink”

Classified as “person” Classified as “motorcycle”

Figure 12: Explanations of the class scores of different predictions. In the first row, the model predicts “bench”
when it puts attention on only the frame at the end of the bed. In the second row, the model is negative
influenced by the context feature and misclassifies a “motorcycle” on a “person”.
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A.5.3 COMPARISON OF EXPLANATIONS FROM DIFFERENT FEATURE MAP LAYERS

In Fig. 13, we visualize and compare the heat maps generated with different feature layers. For the
same target, higher-level layers (e.g. FPN and RoI pooling) show more concentrated attention and
generate smoother heat maps.

resnet_p3 resnet_p4 resnet_p5 FPN

class 
score

regression 
of top (𝑦𝑦1)

RoI poolingresnet_p3 resnet_p4 resnet_p5 FPN

(a) from layers of FCOS

(b) from layers of Faster R-CNN

class 
score

regression 
of top (𝑦𝑦1)

Figure 13: Heat maps computed from different feature maps of the one-stage FCOS and the two-stage Faster R-
CNN, when interpreting the class score and the regression of the top extent (y1 in bounding box), respectively.
The feature maps A(k) are selected from the output feature maps of the ResNet backbone (resnet p3-p5), which
are also the inputs of Feature Pyramid Network (FPN) with P3-P5 level, the FPN ouput, or the RoI pooling
output. Note that the heat map for the RoI Pooling layer is obtained by bilinear interpolating the original map
from 7× 7 to the image size.
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A.5.4 MORE COMPARISONS OF DIFFERENT EXPLANATION METHODS

We provide more comparisons of heat maps from D-RISE, Grad-CAM, Grad-CAM++, and our
ODAM in Fig. 14.

Detected object D-RISE Grad-CAM Grad-CAM++ ODAM

Figure 14: Visual comparison of our approach with other approaches on explaining object detection. The blue
bounding box shows the explained detected object.
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A.5.5 MORE VISUALIZATIONS OF EACH DETECTION ATTRIBUTE

We provide more visualized explanations by ODAM for some high-confidence true positive predic-
tions of the baseline FCOS detector in Fig. 15. The heat maps for the class scores and four regression
values are displayed in each column.

ground truth class score left top right bottom

Figure 15: Visualized explanations of the class score and the regression of left(x1), top(y1), right(x2), and
bottom(y2) extents, respectively.

23



Published as a conference paper at ICLR 2023

A.5.6 THE EFFECT OF GRADIENT DIRECTION IN EXPLAINING BOUNDING BOX REGRESSION

The visualization of the bounding box regression in Fig. 3 (left) is for the FCOS detector. In FCOS,
the (x1, y1, x2, y2) values are the box offsets relative to the anchor center point, i.e, positive values
indicate expanding the box, and negative values indicate shrinking the box. The corresponding
visualizations in Fig. 3 use the ReLU to truncate the negative heat map (Eq. 2), and thus it shows
features important for expanding the regressed box. These features tend to be object parts in the
extremes of the object.

We can also create visualizations using other directions of the gradient or using other functions
beside ReLU when computing the heat map H in (2). Figure 16 shows visualizations for different
settings:

a) using positive gradients and ReLU shows the features important for expanding the box, which
tend to be on the extremes of the object.

b) using negative gradients and ReLU shows the feature for shrinking the box, which tend to be
further inside the object.

c) using positive gradients without ReLU shows a summary of important features in either direc-
tion, using different colors.

d) using positive grardients and Abs instead of ReLU shows a summary of the most important
features overall for the bounding box edge.

(a) Grad-CAM

(b) D-RISE (5000 masks with 8x8)

(b) D-RISE (5000 masks with resolution 16x16)

(c) ODAM w/o Odam-Train (ours) (d) ODAM w/ Odam-Train (ours)

(a) (b)

(c) (d)

Figure 16: Heat maps of the bounding box regression (x1, y1, x2, y2) under different implementation condi-
tions.

We have conducted a user study to find out which version is most useful for users to understand how
the detector has predicted the bounding box. In the questionnaire, for the predicted bounding box
of an object, we show users these four kinds of explanation maps generated by ODAM. Users are
asked to rank these four kinds of maps from the best explanation (1st) to the worst explanation (4th)
with respect to the predicted bounding box. The questionnaire is composed of 20 questions with five
for each box attribute (left, top, right, bottom), and was taken by 10 users, resulting in a total of 200
responses.
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The percentage of ranking and average rank for each type of explanation map is shown in Tab. 10.
The results indicate that the explanation map with only positive gradients better shows the user how
the model predicted the bounding box, while the map with only negative gradients achieved the
worst average rank (Wilcoxon signed-rank test, p < 0.001). The average rank of Pos w/ ReLU is
significantly better than the next best method, Pos w/o ReLU (Wilcoxon signed-rank test, p = .004).
These results confirm that the version using positive gradients for the bounding box explanation map
are the most useful for users.

Table 10: User study for explaining bounding box regression using different gradient information: the percent-
age of ranking and average rank.

Map type 1st 2nd 3rd 4th Averaged Rank
(a) Pos w/ ReLU 37.5% 32.0% 17.5% 13.0% 2.06
(b) Neg w/ ReLU 11.5% 17.0% 30.5% 41.0% 3.01
(c) Pos w/o ReLU 32.0% 19.0% 27.5% 21.5% 2.39
(d) Pos w/ Abs 19.0% 32.0% 24.5% 24.5% 2.55
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A.5.7 MORE EXAMPLES FOR EXPLANATIONS FOR VARIOUS DETECTORS

Fig. 17 shows more visualizations of explanation heat maps generated with different detector heads
and backbones. Interestingly, transformer-based DETR appears to be more heavily focused on object
parts in the extremities of the object, while ignoring other regions, compared to the CNN-based
detectors. This is likely due to the patch-set representation and transformer used as the detector
head.

RetinaNet-
ResNet50

RetinaNet-
PVT

FCOS-
ResNet50

Faster RCNN-
ResNet50

DETR-
ResNet50

Figure 17: More explanation heat maps for various detector architectures. The combination heat maps of
predicted class and bbox regression are visualized.
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A.5.8 COMPARISON WITH ATTENTION MAPS IN DETR

In Figs. 18 and 19, we visualize the heat map explanations for DETR using ODAM, which is a top-
down visual explanation, and the DETR transformer’s self-attention, which is a bottom-up saliency
map. For the encoder transformer, the self-attention will sometimes focus mainly on the object
(e.g., 3rd and 4th columns of Fig. 18b), but also sometimes look at context features (e.g., in 1st
and 2nd columns of Fig. 18b, the bed surrounding the cat and the remote control). For the decoder
transformer shown in Fig. 18d, the self-attention will look at the extremities of the object, i.e, the
points along the predicted bounding box.

(b) Encoder attentions w.r.t the locations

(e) ODAM w.r.t the predictions with using backbone features

(c) Predictions

(d) Decoder attentions w.r.t the corresponding queries of predictions

(a) Locations for self-attention in encoder

Figure 18: Visualizations of self-attention maps in DETR and heat map explanations using ODAM. (a) the
locations for querying the self-attention in the encoder; (b) the encoder self-attention weights at the positions
specified; (c) the predictions of the detector; (d) the decoder self-attention weights of the predictions; (e) the
ODAM combo heat maps of the predictions using the backbone features.

The ODAM combo heat maps are shown in Fig. 18e, and the separate heat maps for individual
attributes are shown in Fig. 19. In Fig. 19, the ODAM heat map for the class score is mostly
consistent with the encoder self-attention maps. However in some cases (e.g., the remote control
in the 2nd column), ODAM shows that less context information is actually used compared to what
is indicated by the encoder self-attention map. ODAM is also able to highlight the the important
regions for predicting each coordinate of the bounding box, e.g., the right parts of the zebra that are
important for predicting the right box coordinate. In contrast, the decoder self-attention highlights all
extremities of the zebra, so the self-attention itself cannot distinguish the importance for individual
outputs, like the bottom coordinate of the bbox.
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prediction

class score

left

top

right

bottom

Figure 19: Visualizing the ODAM explanation heat maps for each prediction attribute of DETR, separately.

From the visualizations, we obtain some interesting interpretations of DETR: 1) the encoder self-
attention mainly highlights the information related to object and context, but not all the context
regions highlighted by self-attention are actually used for prediction according to the ODAM class
heat map; 2) the decoder self-attention mainly highlights all regions at the extremities of the object
(i.e., near the bounding box), but cannot distinguish which regions are important for a particular
box coordinate. In contrast, using ODAM explanations can visualize which features are particularly
important for each predicted attribute (class and each bounding box coordinate).

The transformer self-attention map is a bottom-up attention map (i.e., generally which features are
interesting and correlated with the query). For example, in the transformer encoder, with the feature
itself as query, heat maps highlight the attention w.r.t. each location on the feature map. In the
decoder, with the query corresponding to each prediction, the attention map shows the regions that
are highly correlated with the query. In contrast, the ODAM generates a top-down attention map
(i.e, which features are important for the output prediction). It should be noted that for bottom-up
attention, even if a feature is highlighted in the attention map, there is no guarantee that the feature
is actually used in the subsequent output prediction. In contrast, for the top-down attention, all
highlighted features should be important for generating the prediction. Therefore, we think that
top-down visual explanations are still necessary for transformer-based detectors (Jain & Wallace,
2019), e.g., to interpret the self-attention ifself, and exploring the relationships between top-down
explanations and the self-attention is an interesting area of future work.
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Table 11: Comparison with BBAM using the evaluation of Deletion, Insertion, Pointing Game (PG) accuracy
with ground-truth bounding boxes (b), energy-based PG with box, and Heat Map Compactness.

Deletion↓ Insertion↑ PG(b)↑ energyPG(b) ↑ Compactness↓
Grad-CAM 60.4 11.4 63.1 63.2 0.33
Grad-CAM++ 53.9 22.4 62.2 63.3 0.25
BBAM 27.5 48.7 97.0 96.9 0.059
ODAM 26.0 58.0 98.8 98.9 0.043

A.5.9 COMPARISON WITH BBAM ON PASCAL VOC USING FASTER RCNN

We implemented our ODAM based on the source code of BBAM Lee et al. (2021) and generated
explanation heat maps with the Faster RCNN detector framework for the max score prediction on
each image using BBAM, ODAM, Grad-CAM, or Grad-CAM++ on PASCAL VOC (Everingham
et al., 2010). For evaluation, we conducted the Deletion, Insertion, Pointing Game, and Compactness
metrics in the same way as in Sec. 4.2

The results are shown in Tab. 11. Compared with BBAM, our ODAM performs better in terms
of both faithfulness (Deletion/Insertion) and localization (PointGame/Compactness). Moreover,
ODAM is over 350 times faster than BBAM; the average processing time (including model infer-
ence and heat map generation) of BBAM and ODAM for one prediction on GTX 1080Ti is 81.32s
vs. 0.21s.

Qualitatively, compared to ODAM, the BBAM heat map visualizations are sparser and more focused
on a minimal set of keypoints, which is due to the L1 loss of the mask. For example in Fig. 20, while
ODAM highlights all the distinctive features of the head of a horse (mouth, nose, jawline, ears, eyes,
forehead), BBAM will highlight only the ears and mouth.
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Compare with BBAM on VOC using Faster RCNN

ODAM BBAM

Grad-CAM Grad-CAM++

ODAM BBAM

Grad-CAM Grad-CAM++

Figure 20: Visualization comparison with heatmaps from BBAM on PASCAL VOC using Faster RCNN.
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