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Neural networks are powerful function approximators.

Most networks are non-linear due to the choice of Activation Function (AF).

The selection of activation function has been given substantial attention
and a good choice of activation can make substantial difference in terms
of approximation power, ease of learning and implementation.
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Motivation



Problem

We want to find an AF that is simple and leads to good approximation
in a setting where these two concepts can be formalized and quantified
analytically.

Our focus is on studying the role of AF when learning functions
using the Random Feature Regression model on high dimensional data, i.e.

d ! 1



Setup

Consider a function to be learned                          ,              , that is the sum of 
a linear component and a random non-linear component:

where                            and and    

In particular,               means that the target function 
is linear, and        controls the magnitude of the linear component.
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Setup

To learn      we consider the Random Feature Regression (RFR) model.
RFR is a two-layer network with random weights on the first layer.
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Setup

To learn      we consider the Random Feature Regression (RFR) model.
RFR is a two-layer network with random weights on the first layer.
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The focus of our study
is this Activation Function (AF)



Setup

It is one of the models for which we can analytically study phenomena like
the double descent curve.
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Setup

We obtain noisy samples from     ,
, that satisfy

and solve a regularized least square problem to learn the second layer .
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Problem

What is the AF function that minimizes

that also minimizes
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Main results

Theorem [Wang & Bento]

If                                                          , 
then the optimal AF functions are of the form:

where           and the constants a, b, c and d need to be choose such that 
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Main results

Theorem [Wang & Bento]

If                                                                 , 
then the optimal AF functions are the two quadratics:

where  and 

Remark: Note that              if and only if the AF is linear.
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Main results
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Theorem [Wang & Bento] 

Using an optimal AF (linear) can destroy the double descent curve & lead 
to zero test error for low-complexity models.
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Main results

E

Theorem [Wang & Bento] 

For overparameterized models, using an optimal AF with an arbitrary 
regularization is as good, or better, than using an optimal regularization 
with an non-optimal AF, both in low SNR and high SNR.
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Thank you !

For more information check out our paper:
https://arxiv.org/abs/2206.01332


