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What is Neural Collapse (NC)?

● Modern practice for training neural networks involves a terminal phase of 
training (TPT), which begins at the epoch where training error first vanishes.

● During TPT, the training error stays effectively zero, while training loss is 
pushed toward zero.

● TPT exposes a pervasive symmetry and geometric inductive bias, called 
neural collapse Feature Layer

Confidence/logit Layer



What is Neural Collapse?

● Intra-class variability collapse: Intra-class variability of last-layer features 
collapses to zero, indicating that all the features of the same class concentrate 
to their intra-class feature mean.

● Convergence to simplex ETF: After being centered at their global mean, the 
class-means form a simplex equiangular tight frame (ETF) which is a symmetric 
structure defined by a set of maximally distant and pair-wise equiangular points 
on a hypersphere.

● Convergence to self-duality: The linear classifiers, which live in the dual 
vector space to that of the class-means, converge to their corresponding class-
mean and also form a simplex ETF.

● Nearest decision rule: The linear classifiers behave like nearest class-mean 
classifiers.



An visual illustration



The Pitfall of Neural Collapse

● Simplex ETF does NOT exist when the number of classes (C) is larger than 
the dimension of feature (d), but such a scenario is ubiquitous in practice, e.g., 
contrastive self-supervised learning, extreme classification, face recognition, etc.

Train CNN with cross 
entropy and set feature 
dimension as 2 on MNIST

d=2, C=3 d=2, C=10



Generalized Neural Collapse (GNC)

● Intra-class variability collapse:

● Convergence to hyperspherical uniformity: After being centered at their global 
mean, the class-means are maximally distant on a hypersphere:

where K is a kernel function and here we consider Riesz s-kernel

● Convergence to self-duality:                                   where w denotes the classifier.

● Nearest decision rule:



GNC Provably Covers NC

● Simplex ETF is a global optimum for GNC:

Regular Simplex



Why GNC is Interesting?

● GNC fully covers the case of NC, while being able to generalize to the case of 
d<C.

● Similar to NC that connects frame theory to deep learning, GNC connects 
potential theory to deep learning.

● We use a variational characterization of hyperspherical uniformity, which is 
easily optimizable and gives us natural learning objective (unlike NC).

● We can prove that the widely used cross-entropy loss also converges to GNC.



Empirical Evidence to Validate GNC



Empirical Evidence to Validate GNC

The same empirical phenomenon also happens in ResNet / ViT on ImageNet!



More Theoretical Results on GNC
Cross-Polytope



Decoupling GNC: A New Loss Function

● The cross-entropy (CE) loss is arguably the de facto choice for classification 
loss function.

● While we have proved that CE can provably achieve GNC, it also couples two 
independent criteria: intra-class variability – GNC(1) and inter-class 
separability – GNC(2).

● GNC shows that these two criteria can be fully decoupled and learned 
separately, which yields more flexibility.

● With the characterization of uniformity, we identify a quantity called 
Hyperspherical Uniformity Gap (HUG) that serves as an alternative loss 
function other than CE



Hyperspherical Uniformity Gap

● General version

● Proxy-based version (with classifiers)

provably minimizing = -



Variational Characterization of Hyperspherical Uniformity

● For the function HU, we consider the following choices:
○ Minimizing the potential energy:

○ Maximizing the separation distance:

○ Maximum gram determinant:



Some Simple Variants from the HUG Framework

● From minimizing the potential energy:

● From maximizing the separation distance:

● From maximizing the gram determinant:



Loss Landscape Visualization

● More smooth and convex loss landscape



Decoupled Loss Function Enables Flexibility

● Learning last-layer classifiers is effortless

● The performance gain is agnostic to network architectures



Visualization of learned features

Cross-entropy loss HUG loss



Experiments

● Better OOD generalization and robustness

Long-tail Recognition

Continual Learning

Adversarial Robustness


