Google

Self-Consistency Improves Chain of Thought Reasoning in Language Models

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou

Google Brain

xuezhiw@google.com

Recap: Chain-of-thought (CoT) prompting

Standard Prompting

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11 .
Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27 .

Chain of Thought Prompting

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. $5+6=11$. The answer is 11 .

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had $23-20=3$. They bought 6 more apples, so they have $3+6=9$. The answer is 9 .

CoT prompting greedily decodes the optimal reasoning path

Self-consistency: step 1 - prompt

Prompt with chain of thought

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. $5+6=$ 11. The answer is 11.

Q: Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning

Language model

Google

Self-consistency: step 2 - sample decode

Sample decode with diverse reasoning paths
Prompt with chain of thought
Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. $5+6=$ 11. The answer is 11.

Q: Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder for $\$ 2$ per egg. How much does she make every day?
A:

Google

Note the reasoning paths are optional, so they can be marginalized out

Self-consistency: step 3 - majority vote

Prompt with chain of thought
Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. $5+6=$ 11. The answer is 11.

Q: Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the remainder for $\$ 2$ per egg. How much does she make every day?
A:

Sample decode with diverse reasoning paths

Google

Self-consistency is simple but effective

- Simple compared to many other existing works
- No fine-tuning, no human annotation, no additional modules like a verifier or a re-ranker
- Striking performance gains across:
- Four LLMs with varying scales: UL2-20B, LaMDA-137B, PaLM-540B, GPT-3 (175B)
- SoTA performance across:
- Various reasoning benchmarks: arithmetic, commonsense, and symbolic

Arithmetic reasoning

GSM8K

Greedy Decode - Self-Consistency

- Greedy Decode - Self-Consistency

- Greedy Decode - Self-Consistency

SVAMP

- Greedy Decode - Self-Consistency

Commonsense

 reasoning
CommonsenseQA

- Greedy Decode - Self-Consistency

ARC-easy

> - Greedy Decode •Self-Consistency

Con

StrategyQA

- Greedy Decode - Self-Consistency

ARC-challenge

- Greedy Decode
- Self-Consistency

Google

Self-consistency works with zero-shot CoT

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?
A: Let's think step by step.
(Output) There are 16 balls in total. Half of the balls are golf balls. That means that there are 8 golf balls. Half of the golf balls are blue. That means that there are 4 blue golf balls.

Kojima et al. Large Lanquage Models are Zero-Shot Reasoners. NeurIPS 2022.

PaLM-540B	Zero-shot CoT (Kojima et al., 2022)	43.0
	+ Self-consistency (40 paths)	69.2
Self-consis	orks with "let's think step by step	

Self-consistency achieves SoTA in Minerva and Flan-PaLM

Lewkowycz et al. Solving Quantitative Reasoning Problems with Language Models. 2022.

MMLU		
-	Random	25.0
-	Average human rater	34.5
May 2020	GPT-3 5-shot	43.9
Mar. 2022	Chinchilla 5-shot	67.6
Apr. 2022	PaLM 5-shot	69.3
Oct. 2022	Flan-PaLM 5-shot	$\mathbf{7 2 . 2}$
-	Flan-PaLM 5-shot: CoT + SC	$\mathbf{7 5 . 2}$
	Average human expert	89.8

Chung et al. Scaling Instruction-Finetuned Lanquage Models. 2022.

Check out our paper!

- ID 11718: Self-Consistency Improves Chain of Thought Reasoning in Language Models
- https://arxiv.org/abs/2203.11171
- Questions: xuezhiw@google.com

Google

