Fool SHAP with Stealthily Biased Sampling

¹Gabriel Laberge ²Ulrich Aïvodji ³Satoshi Hara ⁴Mario Marchand ¹Foutse Khomh

¹Polytechnique Montréal

²École de Technologie Supérieure

³Osaka University

⁴Université Laval à Québec

6 avril 2023

I have a private dataset $D = \{ \boldsymbol{x}^{(i)} \}_{i=1}^N$ and a black-box $f: \mathcal{X} \to [0,1]$ to deploy. The feature $x_s \in \{\text{woman}, \text{man}\}$ is sensitive.

Company

To verify the model, we need to measure its fairness metrics. Can you provide access to collection of outputs $f(D_{\text{woman}}), f(D_{\text{man}})$?

$$D_{\mathsf{woman}} = \{ \boldsymbol{x}^{(i)} : x_s^{(i)} = \mathsf{woman} \},$$

$$D_{\mathsf{man}} = \{ \boldsymbol{x}^{(i)} : x_s^{(i)} = \mathsf{man} \}$$

Company

There may be a disparity in model outcomes but that does not means that the model is relying on the sensitive feature. The model may rely on **meritocratic** features correlated with x_s .

Company

To validate your argument we could compute the **Shapley Values** Φ and see which features contribute the most to the disparity.

Company

Shapley Values to Explain Fairness

$$\sum_{i=1}^{d} \Phi_i(f, D_{\text{woman}}, D_{\text{man}}) = \mathbb{E}[f(\boldsymbol{x})|x_s = \text{woman}] - \mathbb{E}[f(\boldsymbol{x})|x_s = \text{man}]. \tag{1}$$

Shapley Values to Explain Fairness

$$\sum_{i=1}^{d} \Phi_i(f, D_{\mathsf{woman}}, D_{\mathsf{man}}) = \mathbb{E}[f(\boldsymbol{x})|x_s = \mathsf{woman}] - \mathbb{E}[f(\boldsymbol{x})|x_s = \mathsf{man}]. \tag{1}$$

Constraint

In practice, a Monte-Carlo estimate $\widehat{\Phi}(f, S_{\text{woman}}, S_{\text{man}})$ is used with two subsets $S_{\text{woman}} \subset D_{\text{woman}}$ and $S_{\text{man}} \subset D_{\text{man}}$ sampled uniformly at random.

8/21

I will share with you two subsets $S_{\mathsf{woman}} \subset D_{\mathsf{woman}}$ and $S_{\mathsf{man}} \subset D_{\mathsf{man}}$ of size M so you can run SHAP on our model and get $\widehat{\Phi}(f, S_{\mathsf{woman}}, S_{\mathsf{man}})$.

Company

Ok let's run SHAP on our own and see what we get.

Company

Ouch ! Is there a way to cherry-pick the subsets $S'_{\mathrm{woman}}, S'_{\mathrm{man}}$ so that $|\widehat{\Phi}_s(f, S'_{\mathrm{woman}}, S'_{\mathrm{man}})|$ is small and the auditor cannot detect the manipulation?

Company

Detection

The audit already has access to $f(D_{\text{woman}}), f(D_{\text{man}})$. Hence they can detect the manipulation with a statistical test

 $\texttt{Detect_fraud}(f(D_{\texttt{woman}}), f(D_{\texttt{man}}), f(S'_{\texttt{woman}}), f(S'_{\texttt{man}}))$

Detection

The audit already has access to $f(D_{\text{woman}}), f(D_{\text{man}})$. Hence they can detect the manipulation with a statistical test

 $Detect_fraud(f(D_{woman}), f(D_{man}), f(S'_{woman}), f(S'_{man}))$

G. Laberge (PolyMTL)

Fool SHAP

Baselines

Issues with Genetic Algorithm

- 1 Feature correlations are ignored in cross-over operation.
- 2 There is no notion of proximity to the original data.

Issues with Genetic Algorithm

- **1** Feature correlations are ignored in cross-over operation.
- 2 There is no notion of proximity to the original data.

Solution: Fool SHAP

1 Sample S'_{woman} uniformly at random.

Issues with Genetic Algorithm

- 1 Feature correlations are ignored in cross-over operation.
- 2 There is no notion of proximity to the original data.

Solution: Fool SHAP

- 1 Sample S'_{woman} uniformly at random.
- 2 Define $\mathcal{B}=\frac{1}{N_{\max}}\sum_{m{x}^{(i)}\in D_{\max}}\delta(m{x}^{(i)})$ and $\mathcal{B}'=\sum_{m{x}^{(i)}\in D_{\max}}\omega_i\delta(m{x}^{(i)})$

15 / 21

G. Laberge (PolyMTL) Fool SHAP 6 avril 2023

Issues with Genetic Algorithm

- 1 Feature correlations are ignored in cross-over operation.
- 2 There is no notion of proximity to the original data.

Solution: Fool SHAP

- 1 Sample S'_{woman} uniformly at random.
- 2 Define $\mathcal{B}=rac{1}{N_{ exttt{man}}}\sum_{m{x}^{(i)}\in D_{ exttt{man}}}\delta(m{x}^{(i)})$ and $\mathcal{B}'=\sum_{m{x}^{(i)}\in D_{ exttt{man}}}\omega_i\delta(m{x}^{(i)})$
- 3 Optimize the weights ω such that :
 - $|\widehat{\Phi}_s(f, S'_{\text{woman}}, S'_{\text{man}})|$ with $S'_{\text{man}} \sim \mathcal{B}'^M$ is small.
 - \mathcal{B}' is close to \mathcal{B} w.r.t the Wasserstein Distance.

Solved with a Minimum Cost Flow (MCF) Linear Program.

6 avril 2023

15 / 21

Output (E) (E) (E) (C)

Here are the subsets $S'_{\text{woman}}, S'_{\text{man}}$ requested.

Company

Conclusion

Contributions

- A new and effective attack on SHAP.
- Said attacks are hard to detect by an external auditor.
- An auditor would need some access to the input features of the private data to circumvent the attack.

Conclusion

Contributions

- A new and effective attack on SHAP.
- Said attacks are hard to detect by an external auditor.
- An auditor would need some access to the input features of the private data to circumvent the attack.

Future Work

- Allow the audit to query more information about the private dataset.
- Cherry-pick S'_{woman} et S'_{man} simultaneously (Bilinear Problem).
- Apply to other measures of fairness.

4 D > 4 B > 4 B > 4 B > 9 Q P