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Company Auditor

I have a private dataset D = {x(i)}Ni=1

and a black-box f : X → [0, 1] to deploy.
The feature xs ∈ {woman,man}
is sensitive.
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Company Auditor

To verify the model, we need to measure its
fairness metrics. Can you provide access to
collection of outputs f(Dwoman), f(Dman) ?
Dwoman = {x(i) : x

(i)
s = woman},

Dman = {x(i) : x
(i)
s = man}
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Company Auditor

There may be a disparity in model outcomes
but that does not means that the model is
relying on the sensitive feature.
The model may rely on meritocratic features
correlated with xs.
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Company Auditor

To validate your argument we could
compute the Shapley Values Φ
and see which features contribute
the most to the disparity.
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Shapley Values to Explain Fairness
d∑

i=1

Φi(f,Dwoman, Dman) = E[f(x)|xs = woman]− E[f(x)|xs = man]. (1)

Constraint

In practice, a Monte-Carlo estimate Φ̂(f, Swoman, Sman) is used with two subsets
Swoman ⊂ Dwoman and Sman ⊂ Dman sampled uniformly at random.
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Company Auditor

I will share with you two subsets
Swoman ⊂ Dwoman and Sman ⊂ Dman
of size M so you can run SHAP on our
model and get Φ̂(f, Swoman, Sman).
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Company

Ok let’s run SHAP on our own and see what we get.
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Company

Ouch ! Is there a way to cherry-pick the subsets
S′woman, S

′
man so that |Φ̂s(f, S

′
woman, S

′
man)| is small

and the auditor cannot detect the manipulation ?
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Detection
The audit already has access to f(Dwoman), f(Dman). Hence they can detect the manipulation
with a statistical test

Detect_fraud(f(Dwoman), f(Dman), f(S′woman), f(S′man))
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Baselines
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Method 3 : Fool SHAP

Issues with Genetic Algorithm
1 Feature correlations are ignored in cross-over operation.
2 There is no notion of proximity to the original data.

Solution : Fool SHAP
1 Sample S′woman uniformly at random.
2 Define B = 1

Nman

∑
x(i)∈Dman

δ(x(i)) and B′ = ∑
x(i)∈Dman

ωiδ(x
(i))

3 Optimize the weights ω such that :
• |Φ̂s(f, S

′
woman, S

′
man)| with S′

man ∼ B′M is small.
• B′ is close to B w.r.t the Wasserstein Distance.

Solved with a Minimum Cost Flow (MCF) Linear Program.
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Method 3 Fool SHAP
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Method 3 Fool SHAP
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Company Auditor

Here are the subsets S′woman, S
′
man requested.
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COMPAS Adult Marketing C&C
Dataset
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Conclusion

Contributions
A new and effective attack on SHAP.
Said attacks are hard to detect by an external auditor.
An auditor would need some access to the input features of the private data to circumvent
the attack.

Future Work
Allow the audit to query more information about the private dataset.
Cherry-pick S′woman et S′man simultaneously (Bilinear Problem).
Apply to other measures of fairness.
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