

Autoencoders as Cross-Modal Teachers: Can Pretrained 2D Image Transformers Help 3D Representation Learning?

Runpei Dong · Zekun Qi · Linfeng Zhang · Junbo Zhang · Jianjian Sun · Zheng Ge Li Yi · Kaisheng Ma

> International Conference on Learning Representations (ICLR) May 1st – 5th, 2023, Kigali Rwanda

Foundation Models in 2D vision and NLP

ICLR

Source: (left) web; (middle) web; (right) Rob Mulla YouTube

Question

What makes 3D representation learning more challenging than 2D vision or NLP?

Motivation: Open Challenges & Issues

• Data Dessert & Pattern Difference

(a) Natural Languages

A: There is a plane on the runway.

Q: How to describe the right pictures?

A: Several planes at the airport.

FormatFree Form WordsScaleBroadSemanticsDense & Structured

(b) 2D RGB Images

RGB

Semantic

Regular Pixels Large Sparse & Unstructured (c) 3D Point Clouds

Cartesian Coordinates Moderate Sparse & Unstructured

Motivation: Open Challenges & Issues

Architectural Disunity •

PointNet, 2017

PointNet++, 2017

Atten is All You Need, 2017

 \cap

Motivation: Open Challenges & Issues

Architectural Disunity

PointNet, 2017

Scaled Dot-Product Attention Multi-Head Attention Linear MatMul Concat SoftMax Mask (opt.) Scaled Dot-Product Attention Scale Linear Linear Linear MatMul Ω Κ Atten is All You Need, 2017

PointNet++, 2017

• Preliminary: A Unified View of Masked Modeling with KD

Data Definition

CLR

- Student network: $f_{\mathcal{S}}$; Teacher network: $f_{\mathcal{T}}$
- A sequence of N_t tokens: $\mathbf{T} = \{\mathbf{t}_i | i = 1, 2, \dots, N_t\}$
- A set of masks: $\mathcal{M} = \{m_i | i = 1, 2, \dots, N_t\} \in \{0, 1\}^{N_t}$
- A learnable corruption embedding: $e^{[M]}$
- Corrupted input: $\mathbf{Z}^{\mathcal{M}} = \mathbb{1}(\mathcal{M}) \odot \boldsymbol{e}^{[M]} + \mathbb{1}(1 \mathcal{M}) \odot \mathbf{T}$
- Distance function defined in some metric space \mathbb{D} : $\mathcal{L}_{\mathbb{D}}(\cdot, \cdot)$
- Decoders: $h_{\mathcal{S}}$ and $h_{\mathcal{T}}$

Unified Objective (minimize) $-\sum_{i=1}^{N_t} m_i \cdot \mathcal{L}_{\mathbb{D}} (h_{\mathcal{S}} \circ f_{\mathcal{S}}(\mathbf{Z}^{\mathcal{M}}), h_{\mathcal{T}} \circ f_{\mathcal{T}}(\mathbf{T}))$

Images from ImageNet

Images from ImageNet

Images from ImageNet

Point Cloud Inputs

ICLR

Experimental Validation

Table 2: Classification results on ScanObjectNN. Ours¹: results trained with no data augmentation. Ours²: results trained with simple point cloud rotation. DA: data augmentation is used during fine-tuning training. The overall accuracy, *i.e.*, OA (%) is reported.

Method	#Params(M)	DA	OBJ_BG	OBJ_ONLY	PB_T50_RS		
Supervised Learning Only							
PointNet (Qi et al., 2017a)	3.5	\checkmark	73.3	79.2	68.0		
SpiderCNN (Xu et al., 2018)	-	\checkmark	77.1	79.5	73.7		
PointNet++ (Qi et al., 2017b)	1.5	\checkmark	82.3	84.3	77.9		
DGCNN (Wang et al., 2019)	1.8	\checkmark	82.8	86.2	78.1		
PointCNN (Li et al., 2018)	0.6	\checkmark	86.1	85.5	78.5		
BGA-DGCNN (Uy et al., 2019a)	1.8	\checkmark	-	-	79.7		
BGA-PN++ (Uy et al., 2019a)	1.5	\checkmark	-	-	80.2		
DRNet (Qiu et al., 2021)	- 🗸		-	80.3			
GBNet (Qiu et al., 2022)	8.8	\checkmark	-	-	80.5		
SimpleView (Goyal et al., 2021)	-	\checkmark	-	-	80.5 ± 0.3		
PRANet (Cheng et al., 2021)	1) 2.3 🗸 -		-	81.0			
MVTN (Hamdi et al., 2021)	-	\checkmark	-	-	82.8		
PointMLP (Ma et al., 2022)	13.2	\checkmark	-	-	85.4 ± 0.3		
with Self-Supervised Representation Learning (FULL)							
Transformer (Vaswani et al., 2017)	22.1	\checkmark	79.86	80.55	77.24		
OcCo (Wang et al., 2021)	22.1	\checkmark	84.85	85.54	78.79		
Point-BERT (Yu et al., 2022)	22.1	\checkmark	87.43	88.12	83.07		
MaskPoint (Liu et al., 2022a)	22.1	\checkmark	89.30	88.10	84.30		
Point-MAE (Pang et al., 2022)	22.1	\checkmark	90.02	88.29	85.18		
ACT (Ours ¹)	22.1	×	91.22	89.16	85.81		
$ACT (Ours^2)$	22.1	\checkmark	93.29	91.91	88.21		
Point-MAE (Pang et al., 2022)	22.1	\checkmark	89.31±0.41	$87.88 {\pm} 0.36$	84.35±0.31		
ACT (Ours ¹)	22.1	\times	90.06 ±0.56	89.02±0.22	85.33 ±0.27		
$ACT (Ours^2)$	22.1	\checkmark	92.48 ±0.59	91.57 ±0.37	87.88±0.36		
with Self-Supervised Representation Learning (MLP-LINEAR)							
Point-MAE (Pang et al., 2022)	22.1	\checkmark	82.58±0.58	83.52±0.41	73.08±0.30		
ACT (Ours ¹)	22.1	×	82.71±0.45	84.34±0.29	74.17±0.05		
ACT (Ours ²)	22.1	\checkmark	85.20 ±0.83	85.84 ±0.15	76.31 ±0.26		
with Self-Supervised Representation Learning (MLP-3)							

with sety s	uper rised Repre	semane	in Bearning (Int	EI 0)	
Point-MAE (Pang et al., 2022)	22.1	\checkmark	$84.29 {\pm} 0.55$	$85.24{\pm}0.67$	$77.34{\pm}0.12$
$ACT (Ours^1)$	22.1	×	85.67±0.29	86.79 ±0.30	78.89 ±0.22
$ACT (Ours^2)$	22.1	\checkmark	87.14 ±0.22	88.90 ±0.40	81.52 ±0.19

Table 5: Few-shot classification on ModelNet40, overall accuracy (%) is reported.

Method	5-v	vay	10-way			
	10-shot	20-shot	10-shot	20-shot		
DGCNN	31.6 ± 2.8	40.8 ± 4.6	19.9 ± 2.1	16.9 ± 1.5		
OcCo	90.6 ± 2.8	92.5 ± 1.9	82.9 ± 1.3	86.5 ± 2.2		
with Self-Supervised Representation Learning (FULL)						
Transformer	87.8 ± 5.2	93.3 ± 4.3	84.6 ± 5.5	89.4 ± 6.3		
OcCo	94.0 ± 3.6	95.9 ± 2.3	89.4 ± 5.1	92.4 ± 4.6		
Point-BERT	94.6 ± 3.1	96.3 ± 2.7	91.0 ± 5.4	92.7 ± 5.1		
Point-MAE	96.3 ± 2.5	97.8 ± 1.8	92.6 ± 4.1	95.0 ± 3.0		
ACT (Ours)	$\textbf{96.8} \pm \textbf{2.3}$	$\textbf{98.0} \pm \textbf{1.4}$	$\textbf{93.3} \pm \textbf{4.0}$	95.6 ± 2.8		
with Self-Supervised Representation Learning (MLP-LINEAR)						
Point-MAE	91.1 ± 5.6	91.7 ± 4.0	83.5 ± 6.1	89.7 ± 4.1		
ACT (Ours)	$\textbf{91.8} \pm \textbf{4.7}$	$\textbf{93.1} \pm \textbf{4.2}$	84.5 ± 6.4	90.7 ± 4.3		
with Self-Supervised Representation Learning (MLP-3)						
Point-MAE	95.0 ± 2.8	96.7 ± 2.4	90.6 ± 4.7	93.8 ± 5.0		
ACT (Ours)	$\textbf{95.9} \pm \textbf{2.2}$	$\textbf{97.7} \pm \textbf{1.8}$	92.4 ± 5.0	94.7 ± 3.9		

Table 11: 3D object detection on the ScanNetV2 dataset. The detection performance using mean Average Precision (mAP) at two different IoU thresholds of 0.50 and 0.25, *i.e.*, AP₅₀ and AP₂₅ are reported. xyz: point cloud coordinates are used.

Method	SSL	Input	AP_{50}	AP_{25}
VoteNet (Qi et al., 2019)	×	xyz	33.5	58.6
PointContrast (Xie et al., 2020)	\checkmark	xyz	38.0	59.2
STRL (Huang et al., 2021)	\checkmark	xyz	38.4	59.5
RandomRooms (Rao et al., 2021)	\checkmark	xyz	36.2	61.3
DepthContrast (Zhang et al., 2021)	\checkmark	xyz	-	61.3
3DETR (Misra et al., 2021)	×	xyz	37.9	62.1
Point-BERT (Yu et al., 2022)	\checkmark	xyz	38.3	61.0
MaskPoint (Liu et al., 2022a)	\checkmark	xyz	40.6	63.4
ACT (Ours)	\checkmark	xyz	42.1	63.8

Autoencoders as Cross-Modal Teachers: Can Pretrained 2D Image Transformers Help 3D Representation Learning?

Runpei Dong · Zekun Qi · Linfeng Zhang · Junbo Zhang · Jianjian Sun · Zheng Ge Li Yi · Kaisheng Ma

Thanks!

Please Stop by at MH1-2-3-4 #75 for more details or contact me if you have any questions. runpei.dong@gmail.com

人工智 Shanghai Artificial Intelligence Laboratory