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Causal Representation Learning

• Given high-dimensional observations of a dynamical system, what are the true causal variables?

• Crucial for reasoning, planning, generalization, and more
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• Common assumption: time resolves causal effects

• But what about observations at low frame rates?

⇒ Instantaneous Effects!

Instantaneous Effects in Temporal Sequences
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time step 𝑡

time step 𝑡 + 1



iCITRIS: Instantaneous Effects in Temporal Sequences
Setup
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• Many more pitfalls, e.g.:

𝑝! 𝐶! 𝑝" 𝐶" vs   𝑝! 𝐶! �̂�" 𝐶" + 𝐶!|𝐶!

• Solution: partially-perfect interventions 
that remove instantaneous parents

⇒ Minimal causal variables [Lippe et al., 
2022] become identifiable 

• Chicken-and-egg situation:
• Without graph, no causal variables
• Without causal variables, no graph

Lippe, Phillip, Sara Magliacane, Sindy Löwe, Yuki M. Asano, 
Taco Cohen, and Efstratios Gavves. "CITRIS: Causal 
Identifiability from Temporal Intervened Sequences." 
In International Conference on Machine Learning, PMLR, 2022.



iCITRIS Architecture
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Causal Identifiability from Temporal Sequences with Interventions

4. Intervention targets are known on the causal factor
level, but we are learning the assignment of latent vari-
ables to the causal factors, so from that perspective we
are learning also the intervention targets

5. Interventions are independent given the prior state

6. There exists an invertible mapping f from latent space
Z to observational space X : f : Z ! X [TODO:
Check if that is strictly necessary. All we require
is that the information of all causal factors can
be uniquely identified in the observations.] [Sara:
maybe something similar to the block MDP as-
sumption here (Du et al., 2019)?]

[TODO: Introduce following notation:]

• M - number of latent variables

• K - number of causal factors

• Ci - causal factor i

• Adding I in the causal graph as additional variables
I1, ..., IK

3. Method
[Phillip: The method section has been written for the
IDF. I am editing it currently to adjust it for the paper
with more details etc.] To find the causal factors from high-
dimensional observations over time with interventions, we
propose OurApproach, a VAE-based causal representation
learning architecture. We first introduce the theoretical
motivation and identifiability results. Then, we discuss the
specific design of the architecture.

3.1. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It} where
xt, xt+1 represent the observations at time step t and t+ 1
respectively, and It 2 [0, 1]K is a binary vector where Iti de-
notes whether the causal variable Ci has been intervened on
or not during the transition from xt to xt+1. We aim to learn
an invertible mapping from observations to a latent space,
g✓ : X ! Z , where the latent space Z follows a certain
structure which identifies and disentangles the causal factors
C1, ..., CK . To do this, we model a probability distribution
in the latent space, p�(zt+1|zt, It) with zt, zt+1 2 RM ,
which enforces a disentanglement over latents by condi-
tioning each latent variable on maximum one of the targets.
Specifically, we pick the distribution over latents to have the
following structure:

p�(z
t+1|zt, It) =

KY

i=1

p�
�
zt+1
 i

|zt, Iti
�

(1)

where  i = {j 2 {1, ...,M}| (j) = i} represents the
set of latent variables assigned to the causal variable i.
 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ...,M} ! {0, ...,K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  ⇤ are the pa-
rameters that, under the constraint of maximizing the like-
lihood p�(g✓(xt+1)|g✓(xt), It), maximize the entropy of
p�(z

t+1
 0

|zt, It). Then, the model �⇤, ✓⇤, ⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0 .

We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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Causal Identifiability from Temporal Sequences with Interventions

{Ct
1, C

t
2, ..., C

t
K}T

t=1, for which at each time step t we
can only observe a high-dimensional observation Xt =
o(Ct

1, C
t
2, ..., C

t
K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct

1, C
t
2, ..., C

t
K) from

the observations Xt under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t � 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector It 2 {0, 1}K where It

i = 1 refers to an intervention
on the causal variable Ct

i . We also assume that interventions
targets It

1, ..., I
t
K are independent of each other given the

prior state: It
i ?? It

j |C
t�1
1 , ..., Ct�1

K .1

In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It+1} where
xt, xt+1 2 RN represent the observations at time step t and

1Note that when two variables Ci and Cj can only be inter-
vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.

[

\

�

�

�

Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and It+1 describes the intervention targets
at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM , M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(zt+1|zt, It+1) with zt, zt+1 2 RM

being the latent variables for xt and xt+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:

p�(zt+1|zt, It+1) =
KY

i=0

p�

�
zt+1
 i

|zt, It+1
i

�
(1)

where  i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and It+1

0 =
;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:
Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify

• VAE-based architecture

• Simultaneous causal discovery 
and representation learning

• Regularization to prevent early 
convergence to local minima



Experiments
Causal Pinball
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Table 11: Experimental results on the Causal Pinball dataset over three seeds.
Model R2 Spearman Triplets SHD (Instant) SHD (Temp)

iCITRIS-ENCO 0.98 / 0.04 0.99 / 0.17 0.02 0.67 3.67
(±0.00) / (±0.01) (±0.00) / (±0.03) (±0.00) (±0.58) (±1.15)

iCITRIS-NOTEARS 0.98 / 0.06 0.99 / 0.19 0.02 2.33 3.67
(±0.00) / (±0.04) (±0.00) / (±0.06) (±0.00) (±0.58) (±0.58)

CITRIS 0.98 / 0.04 0.99 / 0.18 0.02 2.67 4.00
(±0.01) / (±0.01) (±0.00) / (±0.02) (±0.00) (±1.53) (±1.00)

iVAE 0.55 / 0.04 0.58 / 0.14 0.55 2.33 4.33
(±0.08) / (±0.03) (±0.09) / (±0.06) (±0.06) (±0.58) (±1.15)

iVAE-AR 0.53 / 0.15 0.55 / 0.30 0.56 4.33 6.33
(±0.08) / (±0.09) (±0.09) / (±0.08) (±0.06) (±1.53) (±1.53)

paddle_left

paddle_right

ball bumpers score

(a) Original ground truth

paddle_left

paddle_right

ball bumpers score

(b) iCITRIS-ENCO

paddle_left

paddle_right

ball bumpers score

(c) iCITRIS-NOTEARS

paddle_left

paddle_right

ball bumpers score

(d) CITRIS
paddle_left

paddle_right

ball bumpers score

(e) iVAE

paddle_left

paddle_right

ball bumpers score

(f) iVAE-AR

Figure 18: Learned instantaneous graphs in the Causal Pinball dataset for all five models for a single
seed. Red arrows indicate false positive edges, and dashed red arrows false negatives. (a) The ground
truth of the dataset. (b) iCITRIS-ENCO recovered the graph for one seed perfectly, and for the
other two seeds, incorrectly oriented an edge between the ball and paddles. (c) iCITRIS-NOTEARS
commonly has some incorrect orientations between the paddles and the ball. (d) CITRIS, similar to
other experiments, tends to have a sparser instantaneous graph. (e) iVAE has a sparser graph, similar
to CITRIS, but with additional false positive edges. (f) iVAE-AR predicts a causal graph that has no
edge in common with the true graph.

Further, we visualize the predicted causal graphs of the different methods in Figure 18. In general,1719

we found that the most difficult relations are between the paddles and the ball, in particular their1720

orientation. This is due to the deterministic relations between the two factors, such that if the ball has1721

been hit by the paddle, we can already predict it just from the ball position. Further, in many states,1722

the ball and paddle do not affect each other, such that a state where the paddle would have hit the ball,1723

but the ball was intervened upon in the same time step, is extremely rare. Overall, all models suffered1724

from this problem, but iCITRIS showed to handle it.1725

51

Learned Instantaneous Causal Graphs

Published as a conference paper at ICLR 2023

NOTEARS incorrectly orients several edges during training, underlining the benefit of ENCO as
the graph learning method in iCITRIS. The baselines have a significantly higher entanglement of
the causal variables and struggle with finding the true causal graph. Further, in Appendix G.2, we
apply iCITRIS to the original Temporal Causal3DIdent dataset, which contains only temporal causal
relations and no instantaneous effects. In this setting, iCITRIS performs on par with CITRIS, verify-
ing that iCITRIS generalizes CITRIS across datasets. In summary, iCITRIS-ENCO can identify the
causal variables along with their instantaneous graph well, even in a visually challenging dataset.

5.4 REAL GAME DYNAMICS: CAUSAL PINBALL

Figure 3: Example
of Causal Pinball.

Finally, we consider a simplified version of the game Pinball, which naturally
has instantaneous causal effects: if the paddles are activated when the ball
is close, the ball is accelerated immediately. Similarly, when the ball hits a
bumper, its light turns on and the score increases immediately. This results
in instantaneous effects, especially under common frame rates. In this envi-
ronment, we consider five causal variables: the position of the left paddle, the
right paddle, the ball (position and velocity), the state of the bumpers, and the
score. Interventions again remove instantaneous, but keep temporal parents.
Pinball is closer to a real-world environment than the other two datasets and
has two characteristic differences: (1) many aspects of the environment are
deterministic, e.g., the ball movement, and (2) the instantaneous effects are
sparse, e.g., the paddles do not influence the ball if it is far away of them. Such a setting violates
several assumptions like faithfulness, the full support and potential symmetries in the observational
and interventional distributions, questioning whether iCITRIS empirically works here.

Table 2: Results on the Causal Pinball dataset over
three seeds (see Table 12 for standard deviations).

Model R2 (diag " / sep #) SHD (instant # / temp #)

iCITRIS-ENCO 0.99 / 0.12 0.67 / 3.00
iCITRIS-NOTEARS 0.98 / 0.18 3.33 / 4.67
CITRIS 0.90 / 0.39 3.00 / 7.67
iVAE 0.44 / 0.05 4.33 / 4.67
iVAE-AR 0.47 / 0.15 8.00 / 3.67

The results in Table 2 suggest that iCITRIS still
works well on this environment. Besides identi-
fying the causal variables well, iCITRIS-ENCO
identifies the instantaneous causal graph with
minor errors. In contrast, CITRIS entangles the
variables much stronger, while iVAE has diffi-
culties identifying all variables in the environ-
ment. This shows that iCITRIS can be applied
in challenging environments beyond our theoret-
ical limitations, even with deterministic causal effects, while maintaining strong empirical results.

6 CONCLUSION AND DISCUSSION

We propose iCITRIS, a causal representation learning framework for temporal intervened sequences
with potentially instantaneous effects. From such sequences, iCITRIS identifies the minimal causal
variables while jointly learning the instantaneous and temporal causal graph. In experiments, iCITRIS
accurately recovers the causal variables and their graph in three video datasets.

Since instantaneous effects are common in real-world settings (Hyvärinen et al., 2008; Nuzzi et al.,
2021), we believe that iCITRIS contributes an important step towards practical causal representation
learning methods. Still, as with most other theoretical results, our identifiability theorem is limited
by the assumptions it takes. The two most crucial assumptions in iCITRIS are having a dataset,
potentially recorded by an expert, that has (1) non-deterministically related, known intervention
targets and (2) partially-perfect interventions, i.e., interventions that can remove instantaneous parents.
Without the first assumption, causal variables may become entangled in the latent space, and without
the latter, instantaneous causal relations may be predicted where none truly exist. However, as
demonstrated in experiments on Causal3DIdent and Causal Pinball, iCITRIS still achieves a strong
empirical performance in settings that violate other assumptions. For instance, in these experiments,
the distributions had limited support and some variables had circular or categorical domains.

To extend iCITRIS to even more settings, future work includes investigating a setup where interven-
tions are not directly available, but can be performed by sequences of actions, and targets must be
learned in an unsupervised manner. Further, iCITRIS is limited to acyclic graphs, while for instanta-
neous effects cycles could occur under low frame rates, which is also an interesting future direction.

9



Conclusion
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• Causal Representation Learning tries to find the latent causal variables and their relations

• Instantaneous Effects: Effects that occur faster than the frame rate
• We proof the identifiability of causal variables under partially-perfect interventions

• iCITRIS: End-to-end learning of causal representations from temporal sequences 
• Joint causal discovery and causal representation learning
• Regularization to prevent early convergence to local minima Paper and code


