

Dynamic Prompt Learning via Policy Gradient for Semi-structured Mathematical Reasoning

https://promptpg.github.io

Liang Qiu Pan Lu

Kai-Wei Chang

Ashwin Kalyan

Ying Nian Wu

Motivations

- Math word problems (MWPs) a well-defined task to diagnose the ability of intelligent systems to perform numerical reasoning
- However, most existing datasets focus on the textual only setting
- **Tables**, widely distributed in documents, contain rich structured information

Problem: Dan have 5 pens and 3 pencils, Jessica have 4 more pens and 2 less pencils than him. How many pens and pencils do Jessica have in total? **Equation:** x = 5 + 4 + 3 - 2

Solution: 10

Deep Neural Solver for Math Word Problems, EMNLP 2017

ohn Sm Court S lew Yorl		Ship To John Smith 3787 Pineview Drive Cambridge, MA 12210	Invoice # Invoice Date P.O.# Due Date	US-00 11/02/201 2312/201 26/02/201
Qty		Description	Unit Price	Amount
1	Front and re	ar brake cables	100.00	100.0
2	New set of p	edal arms	15.00	30.0
3	Labor 3hrs		5.00	15.0
			Subtotal	145.0
			Sales Tax 6.25%	9.0
			Invoice Total	\$154.0

Flight No.	Airline	Departure Date	Model	Ticket Price	Available
2345	2	03/27/15	747	\$357	No
6785	4	04/26/15	737	\$489	No
8888	5	05/16/16	737	\$525	Yes
6754	3	04/27/17	747	\$399	Yes

Pet Health Record Table

Name of Pet	Dog	Contact Info	555 555-5555
Name of Owner	Adam Smith	Age & Gender of Pet	3 months, male
Breed	African	Weight of Pet	3.5 Kg
Breeder Name	Adam Smith	Color	Brown
Insurance Reference	Saturn	Policy No.	34AS#67

Veterninary Visiting History

Date	Veterinarian	Disesse	Testconducte
15/05/2015	Mr. Frandes	Chicke n pox	YES
20/05/2015	Mr. Frandes	Chicke n pox	No

Previous Charges:		
Amount of Your Last Bill (dated 6/13/2 Payment received 7/3/2018 – Thank y		\$ 137.78 -137.78
Past Due Amount		\$ 0.00
Current Charges:		
📂 Electric Charges		\$ 103.95
Natural Gas Charges		 61.69
Total Current Charges		\$ 165.64
Total includes current and past due charges	Total	\$ 165.64

Late Payments | A late payment fee of 1% per month will apply to past due charges, if any, and amounts unpaid more than 10 business days after the statement due date. Amounts will be considered delinquent if payment is not received on or before the due date.

We propose **TabMWP**, the first **M**ath **W**ord **P**roblem dataset with **Tab**ular contexts.

square beads	\$2.97 per kilogram
oval beads	\$3.41 per kilogram
flower-shaped beads	\$2.18 per kilogram
star-shaped beads	\$1.95 per kilogram
heart-shaped beads	\$1.52 per kilogram
spherical beads	\$3.42 per kilogram
rectangular beads	\$1.97 per kilogram

Sandwich sales									
Shop	Tuna	Egg salad							
City Cafe	6	5							
Sandwich City	3	12							
Express Sandwiches	7	17							
Sam's Sandwich Shop	1	6							
Kelly's Subs	3	4							

Question: If Tracy buys 5 kilograms of spherical beads, 4 kilograms of star-shaped beads, and 3 kilograms of flower-shaped beads, how much will she spend? (unit: \$) **Answer: 31.44** Solution: Find the cost of the spherical beads. Multiply: $3.42 \times 5 = 17.10$. Find the cost of the star-shaped beads. Multiply: $\$1.95 \times 4 = \7.80 . Find the cost of the flower-shaped beads. Multiply: $$2.18 \times 3 = 6.54 . Now find the total cost by adding: 17.10 + 7.80 + 6.54 = 31.44. She will spend \$31.44.

Question: As part of a project for health class, Cara surveyed local delis about the kinds of sandwiches sold. Which shop sold fewer sandwiches, Sandwich City or Express Sandwiches? **Options:** (A) Sandwich City (B) Express Sandwiches Answer: (A) Sandwich City Solution: Add the numbers in the Sandwich City row. Then, add the numbers in the Express Sandwiches row. Sandwich City: 3 + 12 = 15. Express Sandwiches: 7 + 17 = 24.

15 is less than 24. Sandwich City sold fewer sandwiches.

2 Tasks 38.431 Problems 35.442 Solutions 37.644 Tables 12.9/54 Avg/Max cells

Formats of TabMWP

Question types	Answer types (%)	Descriptions
Free-text	Integer (59.50%) Decimal (15.23%)	The answer is an integer number, e.g., "40", "1,207", "-3". The answer is a decimal or a fraction number, e.g., "192.80", "68/217".
Multi-choice	Extractive (13.01%) Boolean (10.97%) Other (1.29%)	The answer could be extracted from the table context. The answer is Boolean, e.g., "yes"/"no", "true"/"false", "linear"/"nonlear". The answer belongs to other text types, e.g., a statement.

Image format Semi-structured format Structured format						at			
Field da	y schedule		Table title: Field day schedule Table tout	Table title: Field day schedule Event Begin					
Event	Begin	End	Table text:	•	water balloon toss	11:20 A M	11.50 A M		
water balloon toss	11:30 A.M.	11:50 A.M.	Event Begin End	U	water balloon toss	11.30 A.W.	11.50 A.W		
obstacle course	12:05 P.M.	12:25 P.M.	water balloon toss 11:30 A.M. 11:50 A.M.	1	obstacle course	12:05 P.M.	12:25 P.M		
parachute ball toss	12:30 P.M.	1:30 P.M.	obstacle course 12:05 P.M. 12:25 P.M.	2	parachute ball toss	12:30 P.M.	1:30 P.M		
jump rope race	1:40 P.M.	2:05 P.M.	parachute ball toss 12:30 P.M. 1:30 P.M.	3	jump rope race	1:40 P.M.	2:05 P.M		
balloon stomp	2:15 P.M.	2:35 P.M.	jump rope race 1:40 P.M. 2:05 P.M.	4	balloon stomp	2:15 P.M.	2:35 P.M		
relay race	2:50 P.M.	3:40 P.M.	balloon stomp 2:15 P.M. 2:35 P.M.	5	relay race	2:50 P.M.	3:40 P.M		
hula hoop contest	3:55 P.M.	4:30 P.M.	relay race 2:50 P.M. 3:40 P.M.	6		3:55 P.M.	4:30 P.M		
potato sack race	4:40 P.M.	5:15 P.M.		0	hula hoop contest	3.55 P.M.	4.30 P.M		
			hula hoop contest 3:55 P.M. 4:30 P.M.	7	potato sack race	4:40 P.M.	5:15 P.M.		

Comparison to existing datasets

_	~ .		Need	Need	Table	Туре	Question	Туре		Answer	Гуре	Solution
Dataset	Size	#Table	Math?	Table?	Domain	Format	Free-text	MC	Text	Integer	Decimal	Туре
Dolphin18K (2016)	831	×	1	×	×	X	1	×	X	1	1	formula
DRAW-1K (2017)	1,000	×	1	×	×	×	1	X	X	1	1	formula
Math23K (2017)	23,162	×	1	×	×	×	1	X	×	1	1	formula
MathQA (2019)	37,297	×	1	×	×	×	×	1	×	1	1	formula
ASDiv (2020)	2,305	×	1	×	×	×	1	×	1	1	1	formula
SVAMP (2021)	1,000	×	1	×	×	X	1	X	×	1	×	formula
GSM8K (2021)	8,792	×	1	×	×	×	1	X	×	1	×	text
IconQA (2021b)	107,439	×	1	×	×	×	1	1	1	1	×	×
FinQA (2021)	8,281	2,766	1	76.6%	finance	text	1	×	X	1	1	program
TAT-QA (2021)	16,552	2,747	50.0%	1	finance	text	1	X	×	1	1	X
MultiHiertt (2022)	10,440	9,843	1	89.8%	finance	text	1	×	×	1	1	×
TABMWP (ours)	38,431	37,644	1	1	open	text*	1	1	1	1	1	text

We propose **PromptPG**, the first work that learns to select in-context examples for few-shot GPT-3 as the **Prompt** via reinforcement learning (**P**olicy **G**radient).

PromptPG: the Algorithm

Algorithm 1 Dynamic Prompt Learning via Policy Gradient (PROMPTPG)

Input: Initial policy π_{θ_0} , training example set P_{train} , candidate example set E_{cand} , # of training epochs N **Output:** Learned policy π_{θ}

```
1: function REINFORCE(\pi_{\theta_0}, P_{\text{train}}, E_{\text{cand}}, N)
            Initialize policy network \pi with parameter \theta_0
 2:
 3:
            for epoch = 1, 2, ..., N do
 4:
                  for P_{\text{batch}} \in P_{\text{train}} do
                                                                                                                          \triangleright get a batch from the training set
 5:
                        \mathcal{L}_{\text{batch}} \leftarrow 0
 6:
                        for p_i \in P_{\text{batch}} do
                              Sample e_i^k \sim \pi_{\theta}(e_i|p_i), e_i^k \in E_{\text{cand}}, k = \{1, ..., K\}
 7:
                                                                                                                            \triangleright K is # of in-context examples
 8:
                              \hat{a}_i \leftarrow \text{GPT-3}(e_i^1, \dots, e_i^k, p_i)
                                                                                                                       \triangleright \hat{a}_i is the GPT-3 generated answer
 9:
                             r_i \leftarrow \text{EVAL}(\hat{a}_i, a_i), r_i \in \{-1, 1\}
                                                                                                                     \triangleright a_i is the ground truth answer of p_i
10:
                              \mathcal{L}_{\text{batch}} \leftarrow \mathcal{L}_{\text{batch}} - r_i \cdot \ln \pi_{\theta}(e_i | p_i)
11:
                        end for
12:
                        Optimize \mathcal{L}_{batch} wrt. \theta
                  end for
13:
14:
            end for
15:
            return \pi_{\theta}
16: end function
```

PromptPG largely reduces the randomness from the random selection of in-context examples and gains an improvement of **5.31%** over random selection, without any designed heuristics.

	Training	Selection	Questio	on Types		Ar	nswer Ty	pes		Gra	ades	
Method	Data	Strategy	FREE	MC	INT	DEC	EXTR	BOOL	OTH	1-6	7-8	Avg.
Heuristic Baselines												
Heuristic guess	-	-	6.71	39.81	8.37	0.26	30.80	51.22	26.67	17.55	12.27	15.29
Human performance	-	-	84.61	<u>93.32</u>	<u>84.95</u>	83.29	<u>97.18</u>	<u>88.69</u>	<u>96.20</u>	<u>94.27</u>	<u>81.28</u>	90.22
pre-trained Baselines												
UnifiedQA _{SMALL}	-	-	1.18	43.62	1.37	0.43	38.70	49.78	37.14	15.57	7.65	12.18
UnifiedQA _{BASE}	-	-	4.60	43.02	5.28	1.97	37.08	50.11	38.10	17.14	11.11	14.56
UnifiedQALARGE	-	-	4.48	<u>48.80</u>	5.19	1.72	48.33	<u>50.33</u>	<u>40.00</u>	19.78	10.87	15.96
TAPEX _{BASE}	-	-	7.32	39.76	8.68	2.06	35.06	47.11	20.95	18.67	11.81	15.73
TAPEXLARGE	-	-	8.80	46.59	10.62	1.72	46.91	48.11	30.48	22.65	13.18	18.59
fine-tuned Baselines												
UnifiedQA _{SMALL}	23,059	-	22.27	51.31	27.27	2.83	52.28	48.11	69.52	35.85	21.71	29.79
UnifiedQA _{BASE}	23,059	-	34.02	70.68	40.74	7.90	84.09	55.67	73.33	53.31	30.46	43.52
UnifiedQA _{LARGE}	23,059	-	48.67	<u>82.18</u>	55.97	20.26	94.63	<u>68.89</u>	<u>79.05</u>	65.92	45.92	57.35
TAPEX _{BASE}	23,059	-	39.59	73.09	46.85	11.33	84.19	61.33	69.52	56.70	37.02	48.27
TAPEXLARGE	23,059	-	<u>51.00</u>	80.02	<u>59.92</u>	16.31	95.34	64.00	73.33	<u>67.11</u>	<u>47.07</u>	58.52
Prompting Baselines w/	GPT-3											
Zero-shot	-	-	53.57	66.67	55.55	45.84	78.22	55.44	54.29	63.37	48.41	56.96
Zero-shot-CoT	-	-	54.36	66.92	55.82	48.67	78.82	55.67	51.43	63.62	49.59	57.61
Few-shot (2-shot)	2	Random	54.69	64.11	58.36	40.40	75.95	52.41	53.02	63.10	49.16	57.13
Few-shot-CoT (2-shot)	2	Random	60.76	<u>69.09</u>	<u>60.04</u>	<u>63.58</u>	76.49	<u>61.19</u>	67.30	<u>68.62</u>	<u>55.31</u>	<u>62.92</u>
PROMPTPG w/ GPT-3	(Ours)											
Few-shot-CoT (2-shot)	160+20	Dynamic	66.17	74.11	64.12	74.16	76.19	72.81	65.71	71.20	64.27	68.23 _{5.31}

▷ In-context example (ID: 13974)									
Table:heart-shaped beads \$3/kilogramrectangular beads \$2/kilogramspherical beads \$2/kilogramoval beads \$2/kilogramQuestion: Rebecca bought 2.5 kilogramsAnswer:(Step 1) Find the cost of the oval beads. Nkilograms.(Step 2) \$2 × 2.5 = \$5(Step 3) She spent \$5. The answer is 5.			· 、 /						

▶ Test example (ID: 17417)

Table:	Bir	thday party
[TITLE]: Birthday party	Activity	Parents
Activity Parents Children	Singing	14
Singing 14 20	Eating cake	5
Eating cake 5 10	Jumping rope	16
Jumping rope 16 20	Swimming	16
Swimming 16 19	Playing tag	4

Playing tag | 4 | 9 Question: At Josie's birthday party, children and parents celebrated by participating in some activities. How many more children than parents are playing tag? (Unit: children)

Answer:

(Step 1) To find the difference between the number of children and parents playing tag, subtract the number of parents from the number of children.

(Step 2) 9 - 4 = 5

(Step 3) There are 5 more children than parents playing tag. The answer is 5.

PromptPG prefers examples with multiple reasoning steps and **similar abilities** in mathematical reasoning to the test example.

The prediction follows the similar reasoning steps and arrives at the **correct** answer.

▷ In-context example (ID: 18429)				
Table:	Children's weights (lbs)			
[TITLE]: Children's weights (lbs)	Stem	Leaf		
Stem Leaf	1	7		
1 7	2	4		
2 4	3			
3 4	4			
4 5 2, 2, 8	5	2, 2, 8		
6 6	6	6		

Question: Dr. Thornton, a pediatrician, weighed all the children who recently visited her office. How many children weighed exactly 52 pounds? (Unit: children)

Answer: (Step 1) For the number 52, the stem is 5, and the leaf is 2. Find the row where the stem is 5. In that row, count all the leaves equal to 2. (Step 2) You counted 2 leaves, which are blue in the stem-and-leaf plot above. (Step 3) 2 children weighed exactly 52 pounds. The answer is 2.

▷ Test example (ID: 17417)

Table:

[TITLE]: Birthday party Activity | Parents | Children Singing | 14 | 20 Eating cake | 5 | 10 Jumping rope | 16 | 20 Swimming | 16 | 19 Playing tag | 4 | 9

Bir	thday party	
Activity	Parents	Children
Singing	14	20
Eating cake	5	10
Jumping rope	16	20
Swimming	16	19
Playing tag	4	9

Question: At Josie's birthday party, children and parents celebrated by participating in some activities. How many more children than parents are playing tag? (Unit: children) **Answer:** (Step 1) For the activity "Playing tag", the stem is 4, and the leaf is 9. Find the row where the stem is 4. In that row, count all the leaves equal to 9. (Step 2) You counted 9 leaves, which are blue in the stem-and-leaf plot above. 9 children are playing tag. The answer is 9. The **nearest neighbor search** strategy selects **semantically similar** examples to the test example.

The prediction follows the wrong reasoning steps and arrives at the **wrong** answer.

Table:	yellow tiger's eye	\$0.85
yellow tiger's eye \$0.85	piece of green slate	\$0.59
piece of green slate \$0.59 piece of red sandstone \$0.19	piece of red sandstone	\$0.19
piece of rose quartz \$0.61	piece of rose quartz	\$0.61
smooth piece of marble \$0.45	smooth piece of marble	\$0.45

Question: How much money does Connor need to buy a piece of rose quartz, a piece of green slate, and a piece of red sandstone? (unit: \$)

Answer:

(Step 1) Connor needs to buy a piece of rose quartz, a piece of green slate, and a piece of red sandstone. To find the total amount of money Connor needs, add the prices of the three items.

(Step 2) **\$0.85** + **\$0.59** + **\$0.19** = **\$1.63**

(Step 3) Connor needs \$1.63 to buy a piece of rose quartz, a piece of green slate, and a piece of red sandstone. The answer is 1.63.

Output: 1.63

Ground truth: 1.39

Table:	Apples per tree	
[TITLE] Apples per tree	Stem	Leaf
Stem Leaf	1	1, 3, 6
1 1, 3, 6	2	2, 3, 3, 6
2 2, 3, 3, 6	3	0
	4	3
	5	2,6
5 2, 6 6 0, 0, 2	6	0, 0, 2
7 2, 8	7	2, 8
8 4, 5, 5, 6, 7	8	4, 5, 5, 6, 7

Question: A farmer counted the number of apples on each tree in her orchard. How many trees have at least 51 apples but fewer than 83 apples? (unit: trees)

Answer:

(Step 1) To solve this problem, look at the table and find all the trees that have at least 51 apples but fewer than 83 apples.

(Step 2) There are three trees that have at least 51 apples but fewer than 83 apples. The answer is 3.

Output: 3

Ground truth: 7

Table:	La	wn mowers sold
[TITLE] Lawn mowers sold	Day	Number of lawn mowers
Day Number of lawn mowers	Tuesday	8
Tuesday 8	Wednesday	7
Wednesday 7	Thursday	5
Thursday 5	Friday	7
Friday 7	Saturday	9
Saturday 9	Sunday	8
Sunday 8	Monday	8
Monday 8	5	
Question: A garden supply store kept track of how	many lawn	mowers it sold in the

is the median of the numbers?

Answer:

(Step 1) The median is the "middle" value. To find the median, put the numbers in order from least to greatest and find the number in the middle.

(Step 2) 8, 7, 5, 7, 9, 8, 8

(Step 3) The median is 7. The answer is 7.

Output: 7

Ground truth: 8

Table:

[TITLE] Tour boat schedule Ocean City | 8:15 A.M. | 9:00 A.M. | 9:15 A.M. | 9:30 A.M. | 10:00 A.M. Whale Watch Harbor | 9:30 A.M. | 10:15 A.M. | 10:30 A.M. | 10:45 A.M. | 11:15 A.M. Oyster Lighthouse | 10:15 A.M. | 11:00 A.M. | 11:15 A.M. | 11:30 A.M. | 12:00 P.M. Fisherman's Cove | 11:15 A.M. | 12:00 P.M. | 12:15 P.M. | 12:30 P.M. | 1:00 P.M. Surfing Beach | 12:00 P.M. | 12:45 P.M. | 1:00 P.M. | 1:15 P.M. | 1:45 P.M.

	То	ur boat sche	dule		
Ocean City	8:15 A.M.	9:00 A.M.	9:15 A.M.	9:30 A.M.	10:00 A.M.
Whale Watch Harbor	9:30 A.M.	10:15 A.M.	10:30 A.M.	10:45 A.M.	11:15 A.M.
Oyster Lighthouse	10:15 A.M.	11:00 A.M.	11:15 A.M.	11:30 A.M.	12:00 P.M.
Fisherman's Cove	11:15 A.M.	12:00 P.M.	12:15 P.M.	12:30 P.M.	1:00 P.M.
Surfing Beach	12:00 P.M.	12:45 P.M.	1:00 P.M.	1:15 P.M.	1:45 P.M.

Question: Look at the following schedule. Haley is at Ocean City at 9.45 A.M. How soon can she get to Surfing Beach?

Options: (A) 1:45 P.M. (B) 12:00 P.M. (C) 10:30 A.M. (D) 12:15 P.M.

Answer:

(Step 1) Find 9:45 A.M. on the schedule.

(Step 2) The next stop is Whale Watch Harbor at 10:15 A.M.

(Step 3) The earliest she can get to Surfing Beach is 12:00 P.M. The answer is 12:00 P.M.

Output: (B) 12:00 P.M.

Ground truth: (A) 1:45 P.M.

Table:	Blocks from school	
[TITLE] Blocks from school	Name	Number of blocks
Name Number of blocks	Wendy	14
Wendy 14	Carson	8
Carson 8	Zach	17
Zach 17	Lila	17
Lila 17	Nicole	3
Nicole 3	Shane	7
Shane 7		
Henry 5	Henry	5
Devin 17	Devin	17

Question: Some students compared how many blocks they live from school. What is the mean of the numbers?

Answer:

(Step 1) The mean is the average of the numbers.

(Step 2) To find the mean, add the numbers and divide by the number of students.

(Step 3) 14 + 8 + 17 + 17 + 3 + 7 + 5 + 17 = 86

(Step 4) There are 8 students, so divide 86 by 8.

(Step 5) $86 \div 8 = 10.75$

(Step 6) The mean is 10.75. The answer is 10.75.

Output: 10.75

Ground truth: 11

PromptPG

Dynamic Prompt Learning via Policy Gradient for Semi-structured Mathematical Reasoning (ICLR 2023)

https://promptpg.github.io