## Dynamic Prompt Learning via Policy Gradient for Semi-structured Mathematical Reasoning



Pan Lu


Liang Qiu


Kai-Wei Chang


Ying Nian Wu


Song-Chun Zhu Tanmay Rajpurohit


Peter Clark


Ashwin Kalyan

## Motivations

- Math word problems (MWPs) a well-defined task to diagnose the ability of intelligent systems to perform numerical reasoning
- However, most existing datasets focus on the textual only setting
- Tables, widely distributed in documents, contain rich structured information

| Problem: Dan have 5 pens and 3 pencils, |
| :--- |
| Jessica have 4 more pens and 2 less pencils |
| than him. How many pens and pencils do |
| Jessica have in total? |
| Equation: $x=5+4+3-2$ |
| Solution: 10 |

Deep Neural Solver for Math Word Problems, EMNLP 2017


Pet Health Record Table


Veterninary Visiting History


## We propose TabMWP, the first Math Word Problem dataset with Tabular contexts.

| square beads | $\$ 2.97$ per kilogram |
| :--- | :--- |
| oval beads | $\$ 3.41$ per kilogram |
| flower-shaped beads | $\$ 2.18$ per kilogram |
| star-shaped beads | $\$ 1.95$ per kilogram |
| heart-shaped beads | $\$ 1.52$ per kilogram |
| spherical beads | $\$ 3.42$ per kilogram |
| rectangular beads | $\$ 1.97$ per kilogram |

Question: If Tracy buys 5 kilograms of spherical beads, 4 kilograms of star-shaped beads, and 3 kilograms of flower-shaped beads, how much will she spend? (unit: \$)
Answer: 31.44

## Solution:

Find the cost of the spherical beads. Multiply: $\$ 3.42 \times 5=\$ 17.10$.
Find the cost of the star-shaped beads. Multiply: $\$ 1.95 \times 4=\$ 7.80$.
Find the cost of the flower-shaped beads. Multiply: $\$ 2.18 \times 3=\$ 6.54$.
Now find the total cost by adding: $\$ 17.10+\$ 7.80+\$ 6.54=\$ 31.44$.
She will spend $\$ 31.44$.

| Sandwich sales |  |  |
| :--- | :---: | :---: |
| Shop | Tuna | Egg salad |
| City Cafe | 6 | 5 |
| Sandwich City | 3 | 12 |
| Express Sandwiches | 7 | 17 |
| Sam's Sandwich Shop | 1 | 6 |
| Kelly's Subs | 3 | 4 |

Question: As part of a project for health class, Cara surveyed local delis about the kinds of sandwiches sold. Which shop sold fewer sandwiches, Sandwich City or Express Sandwiches?
Options: (A) Sandwich City (B) Express Sandwiches
Answer: (A) Sandwich City
Solution:
Add the numbers in the Sandwich City row. Then, add the numbers in the Express Sandwiches row.
Sandwich City: $3+12=15$. Express Sandwiches: $7+17=24$.
15 is less than 24 . Sandwich City sold fewer sandwiches.

## Formats of TabMWP

| Question types | Answer types (\%) | Descriptions |
| :--- | :--- | :--- |
| Free-text | Integer (59.50\%) | The answer is an integer number, e.g., "40"," "1,207", "-3", |
|  | Decimal (15.23\%) | The answer is a decimal or a fraction number, e.g., "192.80", "68/217". |
| Multi-choice | Extractive (13.01\%) | The answer could be extracted from the table context. |
|  | Boolean $(10.97 \%)$ <br> Other $(1.29 \%)$ | The answer is Boolean, e.g., "yes"/"no"," "true"/"false", "linear"/"nonlear". |
|  | The answer belongs to other text types, e.g., a statement. |  |


| Image format |  |  | Semi-structured format | Structured format |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Field day schedule |  |  | Table title: Field day schedule <br> Table text: <br> Event \| Begin | End <br> water balloon toss \| 11:30 A.M. | 11:50 A.M. obstacle course | 12:05 P.M. | 12:25 P.M. <br> parachute ball toss \| 12:30 P.M. | 1:30 P.M. jump rope race | 1:40 P.M. | 2:05 P.M. <br> balloon stomp \| 2:15 P.M. | 2:35 P.M. <br> relay race \| 2:50 P.M. | 3:40 P.M. <br> hula hoop contest \| 3:55 P.M. | 4:30 P.M. | Table title: Field day schedule Event Begin |  |  |  |
| Event | Begin | End |  |  |  |  |  |
| water balloon toss | 11:30 A.M. | 11:50 A.M. |  |  | water balloon toss | 11:30 A.M. | 1:50 A.M. |
| obstacle course | 12:05 P.M. | 12:25 P.M. |  |  | obstacle course | 12:05 P.M. | 12:25 P.M. |
| parachute ball toss | 12:30 P.M. | 1:30 P.M. |  |  | parachute ball toss | 12:30 P.M. | 1:30 P.M. |
| jump rope race | 1:40 P.M. | 2:05 P.M. |  |  | jump rope race | 1:40 P.M. | 2:05 P.M. |
| balloon stomp | 2:15 P.M. | 2:35 P.M. |  |  | balloon stomp | 2:15 P.M. | 2:35 P.M. |
| relay race | 2:50 P.M. | 3:40 P.M. |  |  | relay race | 2:50 P.M. | 3:40 P.M. |
| hula hoop contest | 3:55 P.M. | 4:30 P.M. |  |  | hula hoop contest | 3:55 P.M. | 4:30 P.M. |
| potato sack race | 4:40 P.M. | 5:15 P.M. |  |  | potato sack race | 4:40 P.M. |  |

## Comparison to existing datasets

| Dataset | Size | \#Table | Need <br> Math? | Need Table? | Table Type |  | Question Type |  | Answer Type |  |  | $\begin{aligned} & \text { Solution } \\ & \text { Type } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Domain | Format | Free-text | MC | Text | Integer | Decimal |  |
| Dolphin18K (2016) | 831 | $x$ | $\checkmark$ | $x$ | $x$ | $x$ | $\checkmark$ | $x$ | $x$ | $\checkmark$ | $\checkmark$ | formula |
| DRAW-1K (2017) | 1,000 | $x$ | $\checkmark$ | $x$ | $x$ | $x$ | $\checkmark$ | $x$ | $x$ | $\checkmark$ | $\checkmark$ | formula |
| Math23K (2017) | 23,162 | $x$ | $\checkmark$ | $x$ | $x$ | $x$ | $\checkmark$ | $x$ | $x$ | $\checkmark$ | $\checkmark$ | formula |
| MathQA (2019) | 37,297 | $x$ | $\checkmark$ | $x$ | $x$ | $x$ | $x$ | $\checkmark$ | $x$ | $\checkmark$ | $\checkmark$ | formula |
| ASDiv (2020) | 2,305 | $x$ | $\checkmark$ | $x$ | $x$ | $x$ | $\checkmark$ | $x$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | formula |
| SVAMP (2021) | 1,000 | $x$ | $\checkmark$ | $x$ | $x$ | $x$ | $\checkmark$ | $x$ | $x$ | $\checkmark$ | $x$ | formula |
| GSM8K (2021) | 8,792 | $x$ | $\checkmark$ | $x$ | $x$ | $x$ | $\checkmark$ | $x$ | $x$ | $\checkmark$ | $x$ | text |
| IconQA (2021b) | 107,439 | $x$ | $\checkmark$ | $x$ | $x$ | $x$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $x$ | $x$ |
| FinQA (2021) | 8,281 | 2,766 | $\checkmark$ | 76.6\% | finance | text | $\checkmark$ | $x$ | $x$ | $\checkmark$ | $\checkmark$ | program |
| TAT-QA (2021) | 16,552 | 2,747 | 50.0\% | $\checkmark$ | finance | text | $\checkmark$ | $x$ | $x$ | $\checkmark$ | $\checkmark$ | $x$ |
| MultiHiertt (2022) | 10,440 | 9,843 | $\checkmark$ | 89.8\% | finance | text | $\checkmark$ | $x$ | $x$ | $\checkmark$ | $\checkmark$ | $x$ |
| TABMWP (ours) | 38,431 | 37,644 | $\checkmark$ | $\checkmark$ | open | text* | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | text |

We propose PromptPG, the first work that learns to select in-context examples for few-shot GPT-3 as the Prompt via reinforcement learning (Policy Gradient).


## PromptPG: the Algorithm

```
Algorithm 1 Dynamic Prompt Learning via Policy Gradient (PROMPTPG)
Input: Initial policy \(\pi_{\theta_{0}}\), training example set \(P_{\text {train }}\), candidate example set \(E_{\text {cand }}\), \# of training epochs \(N\)
Output: Learned policy \(\pi_{\theta}\)
    function REINFORCE \(\left(\pi_{\theta_{0}}, P_{\text {train }}, E_{\text {cand }}, N\right)\)
        Initialize policy network \(\pi\) with parameter \(\theta_{0}\)
        for epoch \(=1,2, \ldots, N\) do
            for \(P_{\text {batch }} \in P_{\text {train }}\) do \(\quad \triangleright\) get a batch from the training set
                    \(\mathcal{L}_{\text {batch }} \leftarrow 0\)
                    for \(p_{i} \in P_{\text {batch }}\) do
                    Sample \(e_{i}^{k} \sim \pi_{\theta}\left(e_{i} \mid p_{i}\right), e_{i}^{k} \in E_{\text {cand }}, k=\{1, \ldots, K\} \quad \triangleright K\) is \# of in-context examples
                    \(\hat{a}_{i} \leftarrow \operatorname{GPT}-3\left(e_{i}^{1}, \ldots, e_{i}^{k}, p_{i}\right) \quad \triangleright \hat{a}_{i}\) is the GPT-3 generated answer
                        \(r_{i} \leftarrow \operatorname{EvaL}\left(\hat{a}_{i}, a_{i}\right), r_{i} \in\{-1,1\} \quad \triangleright a_{i}\) is the ground truth answer of \(p_{i}\)
                    \(\mathcal{L}_{\text {batch }} \leftarrow \mathcal{L}_{\text {batch }}-r_{i} \cdot \ln \pi_{\theta}\left(e_{i} \mid p_{i}\right)\)
            end for
            Optimize \(\mathcal{L}_{\text {batch }}\) wrt. \(\theta\)
        end for
        end for
        return \(\pi_{\theta}\)
    end function
```

PromptPG largely reduces the randomness from the random selection of in-context examples and gains an improvement of $5.31 \%$ over random selection, without any designed heuristics.

| Method | Training Data | Selection <br> Strategy | Question Types |  | Answer Types |  |  |  |  | Grades |  | Avg. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | FREE | MC | INT | DEC | EXTR | BOOL | OTH | 1-6 | 7-8 |  |
| Heuristic Baselines |  |  |  |  |  |  |  |  |  |  |  |  |
| Heuristic guess | - | - | 6.71 | 39.81 | 8.37 | 0.26 | 30.80 | 51.22 | 26.67 | 17.55 | 12.27 | 15.29 |
| Human performance | - | - | 84.61 | $\underline{93.32}$ | $\underline{84.95}$ | 83.29 | $\underline{97.18}$ | 88.69 | $\underline{96.20}$ | $\underline{94.27}$ | $\underline{81.28}$ | $\underline{90.22}$ |
| pre-trained Baselines |  |  |  |  |  |  |  |  |  |  |  |  |
| UnifiedQA ${ }_{\text {Small }}$ | - | - | 1.18 | 43.62 | 1.37 | 0.43 | 38.70 | 49.78 | 37.14 | 15.57 | 7.65 | 12.18 |
| UnifiedQA ${ }_{\text {BASE }}$ | - | - | 4.60 | 43.02 | 5.28 | 1.97 | 37.08 | 50.11 | 38.10 | 17.14 | 11.11 | 14.56 |
| UnifiedQA ${ }_{\text {Large }}$ | - | - | 4.48 | 48.80 | 5.19 | 1.72 | 48.33 | 50.33 | 40.00 | 19.78 | 10.87 | 15.96 |
| TAPEX $_{\text {BASE }}$ | - | - | 7.32 | 39.76 | 8.68 | $\underline{2.06}$ | 35.06 | 47.11 | 20.95 | 18.67 | 11.81 | 15.73 |
| TAPEX $_{\text {Large }}$ | - | - | 8.80 | 46.59 | $\underline{10.62}$ | 1.72 | 46.91 | 48.11 | 30.48 | $\underline{22.65}$ | $\underline{13.18}$ | $\underline{18.59}$ |
| fine-tuned Baselines |  |  |  |  |  |  |  |  |  |  |  |  |
| UnifiedQA ${ }_{\text {Small }}$ | 23,059 | - | 22.27 | 51.31 | 27.27 | 2.83 | 52.28 | 48.11 | 69.52 | 35.85 | 21.71 | 29.79 |
| UnifiedQA ${ }_{\text {BASE }}$ | 23,059 | - | 34.02 | 70.68 | 40.74 | 7.90 | 84.09 | 55.67 | 73.33 | 53.31 | 30.46 | 43.52 |
| UnifiedQA ${ }_{\text {Large }}$ | 23,059 | - | 48.67 | $\underline{82.18}$ | 55.97 | $\underline{20.26}$ | 94.63 | 68.89 | 79.05 | 65.92 | 45.92 | 57.35 |
| TAPEX $_{\text {BASE }}$ | 23,059 | - | 39.59 | 73.09 | 46.85 | 11.33 | 84.19 | 61.33 | 69.52 | 56.70 | 37.02 | 48.27 |
| TAPEX $_{\text {Large }}$ | 23,059 | - | $\underline{51.00}$ | 80.02 | $\underline{59.92}$ | 16.31 | 95.34 | 64.00 | 73.33 | $\underline{67.11}$ | $\underline{47.07}$ | $\underline{58.52}$ |
| Prompting Baselines w/ GPT-3 |  |  |  |  |  |  |  |  |  |  |  |  |
| Zero-shot | - | - | 53.57 | 66.67 | 55.55 | 45.84 | 78.22 | 55.44 | 54.29 | 63.37 | 48.41 | 56.96 |
| Zero-shot-CoT | - | - | 54.36 | 66.92 | 55.82 | 48.67 | 78.82 | 55.67 | 51.43 | 63.62 | 49.59 | 57.61 |
| Few-shot (2-shot) | 2 | Random | 54.69 | 64.11 | 58.36 | 40.40 | 75.95 | 52.41 | 53.02 | 63.10 | 49.16 | 57.13 |
| Few-shot-CoT (2-shot) | 2 | Random | $\underline{60.76}$ | $\underline{69.09}$ | $\underline{60.04}$ | $\underline{63.58}$ | 76.49 | $\underline{61.19}$ | 67.30 | $\underline{68.62}$ | 55.31 | $\underline{62.92}$ |
| Prompteg w/ GPT-3 (Ours) |  |  |  |  |  |  |  |  |  |  |  |  |
| Few-shot-CoT (2-shot) | $160+20$ | Dynamic | 66.17 | 74.11 | 64.12 | 74.16 | 76.19 | 72.81 | 65.71 | 71.20 | 64.27 | $\mathbf{6 8 . 2 3}_{5.31 \uparrow}$ |

## $\triangleright$ In-context example (ID: 13974)

## Table:

heart-shaped beads | $\$ 3 /$ kilogram rectangular beads $\mid \$ 2 /$ kilogram spherical beads | $\$ 2 /$ kilogram
oval beads | $\$ 2 /$ kilogram

| heart-shaped beads | $\$ 3 /$ kilogram |
| :--- | :--- |
| rectangular beads | $\$ 2 /$ kilogram |
| spherical beads | $\$ 2 /$ kilogram |
| oval beads | $\$ 2 /$ kilogram |

Question: Rebecca bought 2.5 kilograms of oval beads. How much did she spend? (Unit: \$)
Answer:
(Step 1) Find the cost of the oval beads. Multiply the price per kilogram by the number of kilograms.
(Step 2) $\$ 2 \times 2.5=\$ 5$
(Step 3) She spent $\$ \mathbf{5}$. The answer is 5 .
$\triangleright$ Test example (ID: 17417)

## Table:

[TITLE]: Birthday party
Activity | Parents | Children
Singing | $14 \mid 20$
Eating cake $|5| 10$
Jumping rope $16 \mid 20$
Swimming | $16 \mid 19$

| Birthday party |  |  |
| :--- | :---: | :---: |
| Activity | Parents | Children |
| Singing | 14 | 20 |
| Eating cake | 5 | 10 |
| Jumping rope | 16 | 20 |
| Swimming | 16 | 19 |
| Playing tag | 4 | 9 |

Playing tag | $4 \mid 9$
Question: At Josie's birthday party, children and parents celebrated by participating in some activities. How many more children than parents are playing tag? (Unit: children)
Answer:
(Step 1) To find the difference between the number of children and parents playing tag, subtract the number of parents from the number of children.
(Step 2) $9-\mathbf{4}=\mathbf{5}$
(Step 3) There are 5 more children than parents playing tag. The answer is 5 .

PromptPG prefers examples with multiple reasoning steps and similar abilities in mathematical reasoning to the test example.

The prediction follows the similar reasoning steps and arrives at the correct answer.

## $\triangleright$ In-context example (ID: 18429)

Table:
[TITLE]: Children's weights (lbs)
Stem | Leaf
1 | 7
$2 \mid 4$
$3 \mid$
$4 \mid$
5|2, 2, 8
6|6
Question: Dr. Thornton, a pediatrician, weighed all the children who recently visited her office.
How many children weighed exactly 52 pounds? (Unit: children)
Answer: (Step 1) For the number 52, the stem is 5, and the leaf is 2 . Find the row where the stem is 5. In that row, count all the leaves equal to 2. (Step 2) You counted 2 leaves, which are blue in the stem-and-leaf plot above. (Step 3) 2 children weighed exactly 52 pounds. The answer is 2.
$\triangleright$ Test example (ID: 17417)

## Table:

[TITLE]: Birthday party
Activity | Parents | Children
Singing | $14 \mid 20$
Eating cake $|5| 10$
Jumping rope | $16 \mid 20$
Swimming | $16 \mid 19$
Playing tag $|4| 9$
Question: At Josie's birthday party, children and parents celebrated by participating in some activities. How many more children than parents are playing tag? (Unit: children)
Answer: (Step 1) For the activity "Playing tag", the stem is 4, and the leaf is 9. Find the row where the stem is 4 . In that row, count all the leaves equal to 9 . (Step 2) You counted 9 leaves, which are blue in the stem-and-leaf plot above. 9 children are playing tag. The answer is 9 .

## The nearest neighbor search strategy selects semantically similar examples to the test example.

The prediction follows the wrong reasoning steps and arrives at the wrong answer.

## Failure Cases

```
Table:
yellow tiger's eye | $0.85
piece of green slate | $0.59
piece of red sandstone | $0.19
piece of rose quartz | $0.61
smooth piece of marble | $0.45
\begin{tabular}{|l|l|}
\hline yellow tiger's eye & \(\$ 0.85\) \\
\hline piece of green slate & \(\$ 0.59\) \\
\hline piece of red sandstone & \(\$ 0.19\) \\
\hline piece of rose quartz & \(\$ 0.61\) \\
\hline smooth piece of marble & \(\$ 0.45\) \\
\hline
\end{tabular}
Question: How much money does Connor need to buy a piece of rose quartz, a piece of green slate, and a piece of red sandstone? (unit: \$)
Answer:
(Step 1) Connor needs to buy a piece of rose quartz, a piece of green slate, and a piece of red sandstone. To find the total amount of money Connor needs, add the prices of the three items.
\((\) Step 2) \(\$ 0.85+\$ 0.59+\$ 0.19=\$ 1.63\)
(Step 3) Connor needs \(\$ 1.63\) to buy a piece of rose quartz, a piece of green slate, and a piece of red sandstone. The answer is 1.63 .
```


## Output: 1.63

```
Ground truth: \(\mathbf{1 . 3 9}\)
```


## Failure Cases

| Table: |
| :--- |
| [TITLE $]$ Apples per tree |
| Stem \| Leaf |
| $1\|\mid 1,3,6$ |
| $2 \mid 2,3,3,6$ |
| $3 \mid 0$ |
| $4 \mid 3$ |
| $5 \mid 2,6$ |
| $6 \mid 0,0,2$ |
| $7 \mid 2,8$ |
| $8 \mid 4,5,5,6,7$ |


| Apples per tree |  |
| :---: | :--- |
| Stem | Leaf |
| 1 | $1,3,6$ |
| 2 | $2,3,3,6$ |
| 3 | 0 |
| 4 | 3 |
| 5 | 2,6 |
| 6 | $0,0,2$ |
| 7 | 2,8 |
| 8 | $4,5,5,6,7$ |

Question: A farmer counted the number of apples on each tree in her orchard. How many trees have at least 51 apples but fewer than 83 apples? (unit: trees)
Answer:
(Step 1) To solve this problem, look at the table and find all the trees that have at least 51 apples but fewer than 83 apples.
(Step 2) There are three trees that have at least 51 apples but fewer than 83 apples. The answer is 3 .
Output: 3
Ground truth: 7

## Failure Cases

```
Table:
[TITLE] Lawn mowers sold
Day Number of lawn mowers
Tuesday | }
Wednesday | }
Thursday | }
Friday | }
Saturday | }
Sunday | }
Monday | }
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Lawn mowers sold } \\
\hline \multicolumn{1}{|c|}{ Day } & Number of lawn mowers \\
\hline Tuesday & 8 \\
\hline Wednesday & 7 \\
\hline Thursday & 5 \\
\hline Friday & 7 \\
\hline Saturday & 9 \\
\hline Sunday & 8 \\
\hline Monday & 8 \\
\hline
\end{tabular}
Question: A garden supply store kept track of how many lawn mowers it sold in the past 7 days. What is the median of the numbers?
```


## Answer:

```
(Step 1) The median is the "middle" value. To find the median, put the numbers in order from least to greatest and find the number in the middle.
(Step 2) 8, 7, 5, 7, 9, 8, 8
(Step 3) The median is 7. The answer is 7.
```


## Output: 7

```
Ground truth: 8
```


## Failure Cases

| Table: |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ocean City \| 8:15 Whale Watch Harb Oyster Lighthouse Fisherman's Cove Surfing Beach 12 | M. \| 9:00 | 9:30 A.M 10:15 A.M 11:15 A.M ( P.M. | 12 | A.M. \| 9:15 M. | 10:15 M. |1:00 A | 12:00 P. 2:45 P.M. | | A.M. \| 9:30 A.M. | 10:3 M. | 11:15 M. | 12:15 1:00 P.M. | | 30 A.M. \| 10 A.M. | $10:$ A.M. \| 11 P.M. | 12:30 1:15 P.M. | $\begin{aligned} & \text { 10:00 A.M. } \\ & \text { 10:45 A.M. \| 11:15 A.M. } \\ & \text { :30 A.M. \| 12:00 P.M. } \\ & \text { 30 P.M. \| 1:00 P.M. } \\ & \text { \| 1:45 P.M. } \end{aligned}$ |
| Tour boat schedule |  |  |  |  |  |
| Ocean City | 5 A.M. | 9:00 A.M. | 9:15 A.M. | 9:30 A.M. | 10:00 A.M. |
| Whale Watch Harbor | 9:30 A.M. | 10:15 A.M. | 10:30 A.M. | 10:45 A.M. | 11:15 A.M. |
| Oyster Lighthouse | 10:15 A.M. | 11:00 A.M. | 11:15 A.M. | 11:30 A.M. | 12:00 P.M. |
| Fisherman's Cove | 11:15 A.M. | 12:00 P.M. | 12:15 P.M. | 12:30 P.M. | 1:00 P.M. |
| Surfing Beach | 12:00 P.M. | 12:45 P.M. | 1:00 P.M. | 1:15 P.M. | 1:45 P.M. |

Question: Look at the following schedule. Haley is at Ocean City at 9.45 A.M. How soon can she get to Surfing Beach?
Options: (A) 1:45 P.M. (B) 12:00 P.M. (C) 10:30 A.M. (D) 12:15 P.M.

## Answer:

(Step 1) Find 9:45 A.M. on the schedule.
(Step 2) The next stop is Whale Watch Harbor at 10:15 A.M.
(Step 3) The earliest she can get to Surfing Beach is 12:00 P.M. The answer is 12:00 P.M.
Output: (B) 12:00 P.M.
Ground truth: (A) 1:45 P.M.

## Failure Cases

| Table: <br> [TITLE] Blocks from school | Blocks from school |  |
| :---: | :---: | :---: |
|  | Name | Number of blocks |
| Name \| Number of blocks | Wendy | 14 |
| Wendy \| 14 | Carson | 8 |
| Carson 18 | Zach | 17 |
| Zach \| 17 | Lila | 17 |
| Lila \| 17 | Lila | 17 |
| Nicole \| 3 | Nicole | 3 |
| Shane \| 7 | Shane | 7 |
| Henry \| 5 | Henry | 5 |
| Devin \| 17 | Devin | 17 |
| Question: Some students compared how many blocks they live from school. What is the mean of the numbers? |  |  |
| Answer: |  |  |
| (Step 1) The mean is the average of the numbers. |  |  |
| (Step 2) To find the mean, add the numbers and divide by the number of students. |  |  |
| (Step 3) $14+8+17+17+3+7+5+17=86$ |  |  |
| (Step 4) There are 8 students, so divide 86 by 8 . |  |  |
| (Step 5) $86 \div 8=10.75$ |  |  |
| (Step 6) The mean is 10.75 . The answer is 10.75 . |  |  |
| Output: 10.75 |  |  |
| Ground truth: 11 |  |  |

## \# PromptPG

Dynamic Prompt Learning via Policy Gradient for Semi-structured Mathematical Reasoning (ICLR 2023)
https://promptpg.github.io

